- -

Bifocal Ultrasound Focusing Using Bi-Fresnel Zone Plate Lenses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bifocal Ultrasound Focusing Using Bi-Fresnel Zone Plate Lenses

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez-López, Sergio es_ES
dc.contributor.author Fuster Escuder, José Miguel es_ES
dc.contributor.author Candelas Valiente, Pilar es_ES
dc.contributor.author Tarrazó-Serrano, Daniel es_ES
dc.contributor.author Castiñeira Ibáñez, Sergio es_ES
dc.contributor.author Rubio Michavila, Constanza es_ES
dc.date.accessioned 2020-02-13T21:00:58Z
dc.date.available 2020-02-13T21:00:58Z
dc.date.issued 2020 es_ES
dc.identifier.uri http://hdl.handle.net/10251/136877
dc.description.abstract [EN] In this work, we present a bifocal Fresnel zone plate (BiFZP) capable of generating focusing profiles with two different foci. The performance of the BiFZP is demonstrated in the ultrasound domain, with a very good agreement between the experimental measurements and the finite element method (FEM) simulations. This lens becomes an appealing alternative to other dual-focusing lenses,in which the foci location can only be set at a limited range of positions, such as M-bonacci zone plates. Moreover, the variation of the operating frequency has also been analyzed, providing an additional dynamic control parameter in this type of lenses. es_ES
dc.description.sponsorship This work was supported by the Spanish MICINN RTI2018-100792-B-I00 project. S.P.-L. acknowledges financial support from the Universitat Politècnica de València grant program PAID-01-18. D.T.-S. acknowledges financial support from the MICINN BES-2016-07713 project. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Fresnel Zone Plates es_ES
dc.subject Bifocal Lenses es_ES
dc.subject Ultrasound Focusing es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Bifocal Ultrasound Focusing Using Bi-Fresnel Zone Plate Lenses es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s20030705 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100792-B-I00/ES/FOCALIZACION Y CONFORMACION DE HACES DE ULTRASONIDOS MEDIANTE LENTES PLANAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//BES-2016-077133/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-18/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Pérez-López, S.; Fuster Escuder, JM.; Candelas Valiente, P.; Tarrazó-Serrano, D.; Castiñeira Ibáñez, S.; Rubio Michavila, C. (2020). Bifocal Ultrasound Focusing Using Bi-Fresnel Zone Plate Lenses. Sensors. 20:1-9. https://doi.org/10.3390/s20030705 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s20030705 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.relation.pasarela S\401556 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Fink, M. (1992). Time reversal of ultrasonic fields. I. Basic principles. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 39(5), 555-566. doi:10.1109/58.156174 es_ES
dc.description.references Fink, M., Cassereau, D., Derode, A., Prada, C., Roux, P., Tanter, M., … Wu, F. (2000). Time-reversed acoustics. Reports on Progress in Physics, 63(12), 1933-1995. doi:10.1088/0034-4885/63/12/202 es_ES
dc.description.references Jing, Y., Meral, F. C., & Clement, G. T. (2012). Time-reversal transcranial ultrasound beam focusing using a k-space method. Physics in Medicine and Biology, 57(4), 901-917. doi:10.1088/0031-9155/57/4/901 es_ES
dc.description.references Robertson, J. L. B., Cox, B. T., Jaros, J., & Treeby, B. E. (2017). Accurate simulation of transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation. The Journal of the Acoustical Society of America, 141(3), 1726-1738. doi:10.1121/1.4976339 es_ES
dc.description.references Li, Y., Liang, B., Tao, X., Zhu, X., Zou, X., & Cheng, J. (2012). Acoustic focusing by coiling up space. Applied Physics Letters, 101(23), 233508. doi:10.1063/1.4769984 es_ES
dc.description.references Xie, Y., Wang, W., Chen, H., Konneker, A., Popa, B.-I., & Cummer, S. A. (2014). Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nature Communications, 5(1). doi:10.1038/ncomms6553 es_ES
dc.description.references Assouar, B., Liang, B., Wu, Y., Li, Y., Cheng, J.-C., & Jing, Y. (2018). Acoustic metasurfaces. Nature Reviews Materials, 3(12), 460-472. doi:10.1038/s41578-018-0061-4 es_ES
dc.description.references Chen, J., Xiao, J., Lisevych, D., Shakouri, A., & Fan, Z. (2018). Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens. Nature Communications, 9(1). doi:10.1038/s41467-018-07315-6 es_ES
dc.description.references Lalonde, R. J., Worthington, A., & Hunt, J. W. (1993). Field conjugate acoustic lenses for ultrasound hyperthermia. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 40(5), 592-602. doi:10.1109/58.238113 es_ES
dc.description.references Melde, K., Mark, A. G., Qiu, T., & Fischer, P. (2016). Holograms for acoustics. Nature, 537(7621), 518-522. doi:10.1038/nature19755 es_ES
dc.description.references Jiménez-Gambín, S., Jiménez, N., Benlloch, J. M., & Camarena, F. (2019). Holograms to Focus Arbitrary Ultrasonic Fields through the Skull. Physical Review Applied, 12(1). doi:10.1103/physrevapplied.12.014016 es_ES
dc.description.references Brown, M. D. (2019). Phase and amplitude modulation with acoustic holograms. Applied Physics Letters, 115(5), 053701. doi:10.1063/1.5110673 es_ES
dc.description.references Kirz, J. (1974). Phase zone plates for x rays and the extreme uv. Journal of the Optical Society of America, 64(3), 301. doi:10.1364/josa.64.000301 es_ES
dc.description.references Jefimovs, K., Bunk, O., Pfeiffer, F., Grolimund, D., van der Veen, J. F., & David, C. (2007). Fabrication of Fresnel zone plates for hard X-rays. Microelectronic Engineering, 84(5-8), 1467-1470. doi:10.1016/j.mee.2007.01.112 es_ES
dc.description.references Srisungsitthisunti, P., Ersoy, O. K., & Xu, X. (2007). Laser direct writing of volume modified Fresnel zone plates. Journal of the Optical Society of America B, 24(9), 2090. doi:10.1364/josab.24.002090 es_ES
dc.description.references Rodrigues Ribeiro, R. S., Dahal, P., Guerreiro, A., Jorge, P. A. S., & Viegas, J. (2017). Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells. Scientific Reports, 7(1). doi:10.1038/s41598-017-04490-2 es_ES
dc.description.references Kim, H., Kim, J., An, H., Lee, Y., Lee, G., Na, J., … Jeong, Y. (2017). Metallic Fresnel zone plate implemented on an optical fiber facet for super-variable focusing of light. Optics Express, 25(24), 30290. doi:10.1364/oe.25.030290 es_ES
dc.description.references Hristov, H. D., & Herben, M. H. A. J. (1995). Millimeter-wave Fresnel-zone plate lens and antenna. IEEE Transactions on Microwave Theory and Techniques, 43(12), 2779-2785. doi:10.1109/22.475635 es_ES
dc.description.references Hristov, H. D., & Rodriguez, J. M. (2012). Design Equation for Multidielectric Fresnel Zone Plate Lens. IEEE Microwave and Wireless Components Letters, 22(11), 574-576. doi:10.1109/lmwc.2012.2224099 es_ES
dc.description.references Farnow, S. A., & Auld, B. A. (1975). An Acoustic Phase Plate Imaging Device. Acoustical Holography, 259-273. doi:10.1007/978-1-4615-8216-8_14 es_ES
dc.description.references Sleva, M. Z., Hunt, W. D., & Briggs, R. D. (1994). Focusing performance of epoxy‐ and air‐backed polyvinylidene fluoride Fresnel zone plates. The Journal of the Acoustical Society of America, 96(3), 1627-1633. doi:10.1121/1.410242 es_ES
dc.description.references Calvo, D. C., Thangawng, A. L., Nicholas, M., & Layman, C. N. (2015). Thin Fresnel zone plate lenses for focusing underwater sound. Applied Physics Letters, 107(1), 014103. doi:10.1063/1.4926607 es_ES
dc.description.references Kim, J., Kim, H., Lee, G.-Y., Kim, J., Lee, B., & Jeong, Y. (2018). Numerical and Experimental Study on Multi-Focal Metallic Fresnel Zone Plates Designed by the Phase Selection Rule via Virtual Point Sources. Applied Sciences, 8(3), 449. doi:10.3390/app8030449 es_ES
dc.description.references Saavedra, G., Furlan, W. D., & Monsoriu, J. A. (2003). Fractal zone plates. Optics Letters, 28(12), 971. doi:10.1364/ol.28.000971 es_ES
dc.description.references Furlan, W. D., Saavedra, G., & Monsoriu, J. A. (2007). White-light imaging with fractal zone plates. Optics Letters, 32(15), 2109. doi:10.1364/ol.32.002109 es_ES
dc.description.references Monsoriu, J. A., Calatayud, A., Remon, L., Furlan, W. D., Saavedra, G., & Andres, P. (2013). Bifocal Fibonacci Diffractive Lenses. IEEE Photonics Journal, 5(3), 3400106-3400106. doi:10.1109/jphot.2013.2248707 es_ES
dc.description.references Machado, F., Ferrando, V., Furlan, W. D., & Monsoriu, J. A. (2017). Diffractive m-bonacci lenses. Optics Express, 25(7), 8267. doi:10.1364/oe.25.008267 es_ES
dc.description.references Fuster, J., Pérez-López, S., Candelas, P., & Rubio, C. (2018). Design of Binary-Sequence Zone Plates in High Wavelength Domains. Sensors, 18(8), 2604. doi:10.3390/s18082604 es_ES
dc.description.references Pérez-López, S., Fuster, J. M., Candelas, P., & Rubio, C. (2019). Fractal lenses based on Cantor binary sequences for ultrasound focusing applications. Ultrasonics, 99, 105967. doi:10.1016/j.ultras.2019.105967 es_ES
dc.description.references Pérez-López, S., Fuster, J. M., & Candelas, P. (2019). M-Bonacci Zone Plates for Ultrasound Focusing. Sensors, 19(19), 4313. doi:10.3390/s19194313 es_ES
dc.description.references Castiñeira-Ibáñez, S., Tarrazó-Serrano, D., Minin, O. V., Rubio, C., & Minin, I. V. (2019). Tunable depth of focus of acoustical pupil masked Soret Zone Plate. Sensors and Actuators A: Physical, 286, 183-187. doi:10.1016/j.sna.2018.11.053 es_ES
dc.description.references Pérez-López, S., Fuster, J. M., Candelas, P., Rubio, C., & Belmar, F. (2018). On the use of phase correction rings on Fresnel zone plates with ultrasound piston emitters. Applied Physics Letters, 112(26), 264102. doi:10.1063/1.5036712 es_ES
dc.description.references Fuster, J., Candelas, P., Castiñeira-Ibáñez, S., Pérez-López, S., & Rubio, C. (2017). Analysis of Fresnel Zone Plates Focusing Dependence on Operating Frequency. Sensors, 17(12), 2809. doi:10.3390/s17122809 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem