Mostrar el registro sencillo del ítem
dc.contributor.author | Samper, María-Dolores | es_ES |
dc.contributor.author | Bertomeu, D. | es_ES |
dc.contributor.author | Arrieta, M. P. | es_ES |
dc.contributor.author | Ferri, J. M. | es_ES |
dc.contributor.author | López-Martínez, Juan | es_ES |
dc.date.accessioned | 2020-02-19T21:00:39Z | |
dc.date.available | 2020-02-19T21:00:39Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/137340 | |
dc.description.abstract | [EN] Recycling polymers is common due to the need to reduce the environmental impact of these materials. Polypropylene (PP) is one of the polymers called commodities polymers' and it is commonly used in a wide variety of short-term applications such as food packaging and agricultural products. That is why a large amount of PP residues that can be recycled are generated every year. However, the current increasing introduction of biodegradable polymers in the food packaging industry can negatively affect the properties of recycled PP if those kinds of plastics are disposed with traditional plastics. For this reason, the influence that generates small amounts of biodegradable polymers such as polylactic acid (PLA), polyhydroxybutyrate (PHB) and thermoplastic starch (TPS) in the recycled PP were analyzed in this work. Thus, recycled PP was blended with biodegradables polymers by melt extrusion followed by injection moulding process to simulate the industrial conditions. Then, the obtained materials were evaluated by studding the changes on the thermal and mechanical performance. The results revealed that the vicat softening temperature is negatively affected by the presence of biodegradable polymers in recycled PP. Meanwhile, the melt flow index was negatively affected for PLA and PHB added blends. The mechanical properties were affected when more than 5 wt.% of biodegradable polymers were present. Moreover, structural changes were detected when biodegradable polymers were added to the recycled PP by means of FTIR, because of the characteristic bands of the carbonyl group (between the band 1700-1800 cm(-1)) appeared due to the presence of PLA, PHB or TPS. Thus, low amounts (lower than 5 wt.%) of biodegradable polymers can be introduced in the recycled PP process without affecting the overall performance of the final material intended for several applications, such as food packaging, agricultural films for farming and crop protection. | es_ES |
dc.description.sponsorship | This research was funded by Conselleria d'Educacio, Investigacio, Cultura y Esport de la Generalitat Valenciana, grant number APOSTD/2018/209. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Materials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Recycling | es_ES |
dc.subject | Polypropylene | es_ES |
dc.subject | Biodegradable polymers | es_ES |
dc.subject | Degradation | es_ES |
dc.subject | Inmiscibility | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Interference of biodegradable plastics in the polypropylene recycling process | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ma11101886 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F209/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.description.bibliographicCitation | Samper, M.; Bertomeu, D.; Arrieta, MP.; Ferri, JM.; López-Martínez, J. (2018). Interference of biodegradable plastics in the polypropylene recycling process. Materials. 11(10):1-18. https://doi.org/10.3390/ma11101886 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ma11101886 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.eissn | 1996-1944 | es_ES |
dc.relation.pasarela | S\350553 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Plastics Europe, Plastics—The Facts 2017https://www.plasticseurope.org/application/files/5715/1717/4180/Plastics_the_facts_2017_FINAL_for_website_one_page.pdf | es_ES |
dc.description.references | Ares, A., Bouza, R., Pardo, S. G., Abad, M. J., & Barral, L. (2010). Rheological, Mechanical and Thermal Behaviour of Wood Polymer Composites Based on Recycled Polypropylene. Journal of Polymers and the Environment, 18(3), 318-325. doi:10.1007/s10924-010-0208-x | es_ES |
dc.description.references | Bodar, C., Spijker, J., Lijzen, J., Waaijers-van der Loop, S., Luit, R., Heugens, E., … Traas, T. (2018). Risk management of hazardous substances in a circular economy. Journal of Environmental Management, 212, 108-114. doi:10.1016/j.jenvman.2018.02.014 | es_ES |
dc.description.references | Alam, O., Wang, S., & Lu, W. (2018). Heavy metals dispersion during thermal treatment of plastic bags and its recovery. Journal of Environmental Management, 212, 367-374. doi:10.1016/j.jenvman.2018.02.034 | es_ES |
dc.description.references | Bucci, D. Z., Tavares, L. B. B., & Sell, I. (2005). PHB packaging for the storage of food products. Polymer Testing, 24(5), 564-571. doi:10.1016/j.polymertesting.2005.02.008 | es_ES |
dc.description.references | Siracusa, V., Rocculi, P., Romani, S., & Rosa, M. D. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 19(12), 634-643. doi:10.1016/j.tifs.2008.07.003 | es_ES |
dc.description.references | Claro, P. I. C., Neto, A. R. S., Bibbo, A. C. C., Mattoso, L. H. C., Bastos, M. S. R., & Marconcini, J. M. (2016). Biodegradable Blends with Potential Use in Packaging: A Comparison of PLA/Chitosan and PLA/Cellulose Acetate Films. Journal of Polymers and the Environment, 24(4), 363-371. doi:10.1007/s10924-016-0785-4 | es_ES |
dc.description.references | Avérous, L. (2004). Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. Journal of Macromolecular Science, Part C: Polymer Reviews, 44(3), 231-274. doi:10.1081/mc-200029326 | es_ES |
dc.description.references | Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., … Kenny, J. M. (2015). Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polymer Letters, 9(7), 583-596. doi:10.3144/expresspolymlett.2015.55 | es_ES |
dc.description.references | Arrieta, M. P., López, J., Rayón, E., & Jiménez, A. (2014). Disintegrability under composting conditions of plasticized PLA–PHB blends. Polymer Degradation and Stability, 108, 307-318. doi:10.1016/j.polymdegradstab.2014.01.034 | es_ES |
dc.description.references | Garcia-Garcia, D., Ferri, J. M., Montanes, N., Lopez-Martinez, J., & Balart, R. (2016). Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate). Polymer International, 65(10), 1157-1164. doi:10.1002/pi.5164 | es_ES |
dc.description.references | Russo, M. A. L., O’Sullivan, C., Rounsefell, B., Halley, P. J., Truss, R., & Clarke, W. P. (2009). The anaerobic degradability of thermoplastic starch: Polyvinyl alcohol blends: Potential biodegradable food packaging materials. Bioresource Technology, 100(5), 1705-1710. doi:10.1016/j.biortech.2008.09.026 | es_ES |
dc.description.references | Neumann, I. A., Flores-Sahagun, T. H. S., & Ribeiro, A. M. (2017). Biodegradable poly (l-lactic acid) (PLLA) and PLLA-3-arm blend membranes: The use of PLLA-3-arm as a plasticizer. Polymer Testing, 60, 84-93. doi:10.1016/j.polymertesting.2017.03.013 | es_ES |
dc.description.references | Khalid, S., Yu, L., Meng, L., Liu, H., Ali, A., & Chen, L. (2017). Poly(lactic acid)/starch composites: Effect of microstructure and morphology of starch granules on performance. Journal of Applied Polymer Science, 134(46), 45504. doi:10.1002/app.45504 | es_ES |
dc.description.references | Arrieta, M., Samper, M., Aldas, M., & López, J. (2017). On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 10(9), 1008. doi:10.3390/ma10091008 | es_ES |
dc.description.references | Cosate de Andrade, M. F., Souza, P. M. S., Cavalett, O., & Morales, A. R. (2016). Life Cycle Assessment of Poly(Lactic Acid) (PLA): Comparison Between Chemical Recycling, Mechanical Recycling and Composting. Journal of Polymers and the Environment, 24(4), 372-384. doi:10.1007/s10924-016-0787-2 | es_ES |
dc.description.references | Navarro, R., Ferrándiz, S., López, J., & Seguí, V. J. (2008). The influence of polyethylene in the mechanical recycling of polyethylene terephtalate. Journal of Materials Processing Technology, 195(1-3), 110-116. doi:10.1016/j.jmatprotec.2007.04.126 | es_ES |
dc.description.references | Navarro, R., López, J., Parres, F., & Ferrándiz, S. (2011). Process behavior of compatible polymer blends. Journal of Applied Polymer Science, 124(3), 2485-2493. doi:10.1002/app.35260 | es_ES |
dc.description.references | Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Crespo-Amorós, J. E., López, J., Perejón, A., & Criado, J. M. (2010). Quantitative Characterization of Multicomponent Polymers by Sample-Controlled Thermal Analysis. Analytical Chemistry, 82(21), 8875-8880. doi:10.1021/ac101651g | es_ES |
dc.description.references | Alaerts, L., Augustinus, M., & Van Acker, K. (2018). Impact of Bio-Based Plastics on Current Recycling of Plastics. Sustainability, 10(5), 1487. doi:10.3390/su10051487 | es_ES |
dc.description.references | Pivsa-Art, S., Kord-Sa-Ard, J., Pivsa-Art, W., Wongpajan, R., O-Charoen, N., Pavasupree, S., & Hamada, H. (2016). Effect of Compatibilizer on PLA/PP Blend for Injection Molding. Energy Procedia, 89, 353-360. doi:10.1016/j.egypro.2016.05.046 | es_ES |
dc.description.references | Yoo, T. W., Yoon, H. G., Choi, S. J., Kim, M. S., Kim, Y. H., & Kim, W. N. (2010). Effects of compatibilizers on the mechanical properties and interfacial tension of polypropylene and poly(lactic acid) blends. Macromolecular Research, 18(6), 583-588. doi:10.1007/s13233-010-0613-y | es_ES |
dc.description.references | Rosa, D. S., Guedes, C. G. F., & Carvalho, C. L. (2007). Processing and thermal, mechanical and morphological characterization of post-consumer polyolefins/thermoplastic starch blends. Journal of Materials Science, 42(2), 551-557. doi:10.1007/s10853-006-1049-9 | es_ES |
dc.description.references | Sadi, R. K., Kurusu, R. S., Fechine, G. J. M., & Demarquette, N. R. (2011). Compatibilization of polypropylene/ poly(3-hydroxybutyrate) blends. Journal of Applied Polymer Science, 123(6), 3511-3519. doi:10.1002/app.34853 | es_ES |
dc.description.references | Parres, F., Balart, R., López, J., & García, D. (2008). Changes in the mechanical and thermal properties of high impact polystyrene (HIPS) in the presence of low polypropylene (PP) contents. Journal of Materials Science, 43(9), 3203-3209. doi:10.1007/s10853-008-2555-8 | es_ES |
dc.description.references | Fekete, E., Földes, E., & Pukánszky, B. (2005). Effect of molecular interactions on the miscibility and structure of polymer blends. European Polymer Journal, 41(4), 727-736. doi:10.1016/j.eurpolymj.2004.10.038 | es_ES |
dc.description.references | Macaúbas, P. H. P., & Demarquette, N. R. (2002). Time-temperature superposition principle applicability for blends formed of immiscible polymers. Polymer Engineering & Science, 42(7), 1509-1519. doi:10.1002/pen.11047 | es_ES |
dc.description.references | Polymer Properties Databasehttps://polymerdatabase.com/polymer%20classes/Intro.html | es_ES |
dc.description.references | Goonoo, N., Bhaw-Luximon, A., & Jhurry, D. (2015). Biodegradable polymer blends: miscibility, physicochemical properties and biological response of scaffolds. Polymer International, 64(10), 1289-1302. doi:10.1002/pi.4937 | es_ES |
dc.description.references | Arrieta, M. P., López, J., López, D., Kenny, J. M., & Peponi, L. (2015). Development of flexible materials based on plasticized electrospun PLA–PHB blends: Structural, thermal, mechanical and disintegration properties. European Polymer Journal, 73, 433-446. doi:10.1016/j.eurpolymj.2015.10.036 | es_ES |
dc.description.references | Ferri, J. M., Garcia-Garcia, D., Carbonell-Verdu, A., Fenollar, O., & Balart, R. (2017). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. Journal of Applied Polymer Science, 135(4), 45751. doi:10.1002/app.45751 | es_ES |
dc.description.references | Sessini, V., Arrieta, M. P., Kenny, J. M., & Peponi, L. (2016). Processing of edible films based on nanoreinforced gelatinized starch. Polymer Degradation and Stability, 132, 157-168. doi:10.1016/j.polymdegradstab.2016.02.026 | es_ES |
dc.description.references | Fan, Y., Nishida, H., Shirai, Y., Tokiwa, Y., & Endo, T. (2004). Thermal degradation behaviour of poly(lactic acid) stereocomplex. Polymer Degradation and Stability, 86(2), 197-208. doi:10.1016/j.polymdegradstab.2004.03.001 | es_ES |
dc.description.references | Sessini, V., Raquez, J.-M., Lourdin, D., Maigret, J.-E., Kenny, J. M., Dubois, P., & Peponi, L. (2017). Humidity-Activated Shape Memory Effects on Thermoplastic Starch/EVA Blends and Their Compatibilized Nanocomposites. Macromolecular Chemistry and Physics, 218(24), 1700388. doi:10.1002/macp.201700388 | es_ES |
dc.description.references | Gerard, T., Budtova, T., Podshivalov, A., & Bronnikov, S. (2014). Polylactide/poly(hydroxybutyrate-co-hydroxyvalerate) blends: Morphology and mechanical properties. Express Polymer Letters, 8(8), 609-617. doi:10.3144/expresspolymlett.2014.64 | es_ES |
dc.description.references | Lanzotti, A., Grasso, M., Staiano, G., & Martorelli, M. (2015). The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyping Journal, 21(5), 604-617. doi:10.1108/rpj-09-2014-0135 | es_ES |
dc.description.references | Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014). Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. doi:10.1016/j.eurpolymj.2013.11.009 | es_ES |
dc.description.references | Du, Y.-L., Cao, Y., Lu, F., Li, F., Cao, Y., Wang, X.-L., & Wang, Y.-Z. (2008). Biodegradation behaviors of thermoplastic starch (TPS) and thermoplastic dialdehyde starch (TPDAS) under controlled composting conditions. Polymer Testing, 27(8), 924-930. doi:10.1016/j.polymertesting.2008.08.002 | es_ES |