- -

A Review of Multicriteria Assessment Techniques Applied to Sustainable Infrastructure Design

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Review of Multicriteria Assessment Techniques Applied to Sustainable Infrastructure Design

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Navarro, I. J. es_ES
dc.contributor.author Yepes, V. es_ES
dc.contributor.author Martí, J. V. es_ES
dc.date.accessioned 2020-02-22T21:01:51Z
dc.date.available 2020-02-22T21:01:51Z
dc.date.issued 2019 es_ES
dc.identifier.issn 1687-8086 es_ES
dc.identifier.uri http://hdl.handle.net/10251/137595
dc.description.abstract [EN] Given the great impacts associated with the construction and maintenance of infrastructures in both the environmental, the economic and the social dimensions, a sustainable approach to their design appears essential to ease the fulfilment of the Sustainable Development Goals set by the United Nations. Multicriteria decision-making methods are usually applied to address the complex and often conflicting criteria that characterise sustainability. The present study aims to review the current state of the art regarding the application of such techniques in the sustainability assessment of infrastructures, analysing as well the sustainability impacts and criteria included in the assessments. The Analytic Hierarchy Process is the most frequently used weighting technique. Simple Additive Weighting has turned out to be the most applied decision-making method to assess the weighted criteria. Although a life cycle assessment approach is recurrently used to evaluate sustainability, standardised concepts, such as cost discounting, or presentation of the assumed functional unit or system boundaries, as required by ISO 14040, are still only marginally used. Additionally, a need for further research in the inclusion of fuzziness in the handling of linguistic variables is identified. es_ES
dc.description.sponsorship The authors acknowledge the financial support of the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (Project no. BIA2017-85098-R). es_ES
dc.language Inglés es_ES
dc.publisher Hindawi Limited es_ES
dc.relation.ispartof Advances in Civil Engineering es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Infrastructure es_ES
dc.subject Decision making es_ES
dc.subject Sustainability es_ES
dc.subject Design es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title A Review of Multicriteria Assessment Techniques Applied to Sustainable Infrastructure Design es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2019/6134803 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Navarro, IJ.; Yepes, V.; Martí, JV. (2019). A Review of Multicriteria Assessment Techniques Applied to Sustainable Infrastructure Design. Advances in Civil Engineering. 2019(6134803):1-16. https://doi.org/10.1155/2019/6134803 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1155/2019/6134803 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2019 es_ES
dc.description.issue 6134803 es_ES
dc.relation.pasarela S\389671 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Kyriacou, A. P., Muinelo-Gallo, L., & Roca-Sagalés, O. (2019). The efficiency of transport infrastructure investment and the role of government quality: An empirical analysis. Transport Policy, 74, 93-102. doi:10.1016/j.tranpol.2018.11.017 es_ES
dc.description.references García-Segura, T., Yepes, V., Martí, J. V., & Alcalá, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190-1205. doi:10.1590/s1679-78252014000700007 es_ES
dc.description.references Yepes, V., Martí, J. V., García-Segura, T., & González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749. doi:10.1016/j.acme.2017.02.006 es_ES
dc.description.references Frangopol, D. M. (2011). Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges1. Structure and Infrastructure Engineering, 7(6), 389-413. doi:10.1080/15732471003594427 es_ES
dc.description.references Safi, M., Sundquist, H., & Karoumi, R. (2015). Cost-Efficient Procurement of Bridge Infrastructures by Incorporating Life-Cycle Cost Analysis with Bridge Management Systems. Journal of Bridge Engineering, 20(6), 04014083. doi:10.1061/(asce)be.1943-5592.0000673 es_ES
dc.description.references Navarro, I. J., Yepes, V., Martí, J. V., & González-Vidosa, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196, 698-713. doi:10.1016/j.jclepro.2018.06.110 es_ES
dc.description.references Zhang, Y.-R., Wu, W.-J., & Wang, Y.-F. (2016). Bridge life cycle assessment with data uncertainty. The International Journal of Life Cycle Assessment, 21(4), 569-576. doi:10.1007/s11367-016-1035-7 es_ES
dc.description.references García-Segura, T., Penadés-Plà, V., & Yepes, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202, 904-915. doi:10.1016/j.jclepro.2018.08.177 es_ES
dc.description.references Van den Heede, P., & De Belie, N. (2014). A service life based global warming potential for high-volume fly ash concrete exposed to carbonation. Construction and Building Materials, 55, 183-193. doi:10.1016/j.conbuildmat.2014.01.033 es_ES
dc.description.references Braga, A. M., Silvestre, J. D., & de Brito, J. (2017). Compared environmental and economic impact from cradle to gate of concrete with natural and recycled coarse aggregates. Journal of Cleaner Production, 162, 529-543. doi:10.1016/j.jclepro.2017.06.057 es_ES
dc.description.references Hossain, M. U., Poon, C. S., Dong, Y. H., Lo, I. M. C., & Cheng, J. C. P. (2017). Development of social sustainability assessment method and a comparative case study on assessing recycled construction materials. The International Journal of Life Cycle Assessment, 23(8), 1654-1674. doi:10.1007/s11367-017-1373-0 es_ES
dc.description.references Dong, Y. H., & Ng, S. T. (2015). A social life cycle assessment model for building construction in Hong Kong. The International Journal of Life Cycle Assessment, 20(8), 1166-1180. doi:10.1007/s11367-015-0908-5 es_ES
dc.description.references Sierra, L. A., Yepes, V., García-Segura, T., & Pellicer, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176, 521-534. doi:10.1016/j.jclepro.2017.12.140 es_ES
dc.description.references Montalbán-Domingo, L., García-Segura, T., Sanz, M. A., & Pellicer, E. (2018). Social sustainability criteria in public-work procurement: An international perspective. Journal of Cleaner Production, 198, 1355-1371. doi:10.1016/j.jclepro.2018.07.083 es_ES
dc.description.references Zamarrón-Mieza, I., Yepes, V., & Moreno-Jiménez, J. M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147, 217-230. doi:10.1016/j.jclepro.2017.01.092 es_ES
dc.description.references Sierra, L. A., Yepes, V., & Pellicer, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187, 496-513. doi:10.1016/j.jclepro.2018.03.022 es_ES
dc.description.references Reza, B., Sadiq, R., & Hewage, K. (2011). Sustainability assessment of flooring systems in the city of Tehran: An AHP-based life cycle analysis. Construction and Building Materials, 25(4), 2053-2066. doi:10.1016/j.conbuildmat.2010.11.041 es_ES
dc.description.references Pons, O., & de la Fuente, A. (2013). Integrated sustainability assessment method applied to structural concrete columns. Construction and Building Materials, 49, 882-893. doi:10.1016/j.conbuildmat.2013.09.009 es_ES
dc.description.references Mosalam, K. M., Alibrandi, U., Lee, H., & Armengou, J. (2018). Performance-based engineering and multi-criteria decision analysis for sustainable and resilient building design. Structural Safety, 74, 1-13. doi:10.1016/j.strusafe.2018.03.005 es_ES
dc.description.references Perini, K., & Rosasco, P. (2013). Cost–benefit analysis for green façades and living wall systems. Building and Environment, 70, 110-121. doi:10.1016/j.buildenv.2013.08.012 es_ES
dc.description.references Gilani, G., Blanco, A., & Fuente, A. de la. (2017). A New Sustainability Assessment Approach Based on Stakeholder’s Satisfaction for Building Façades. Energy Procedia, 115, 50-58. doi:10.1016/j.egypro.2017.05.006 es_ES
dc.description.references Moussavi Nadoushani, Z. S., Akbarnezhad, A., Ferre Jornet, J., & Xiao, J. (2017). Multi-criteria selection of façade systems based on sustainability criteria. Building and Environment, 121, 67-78. doi:10.1016/j.buildenv.2017.05.016 es_ES
dc.description.references Guzmán-Sánchez, S., Jato-Espino, D., Lombillo, I., & Diaz-Sarachaga, J. M. (2018). Assessment of the contributions of different flat roof types to achieving sustainable development. Building and Environment, 141, 182-192. doi:10.1016/j.buildenv.2018.05.063 es_ES
dc.description.references Hashemkhani Zolfani, S., Pourhossein, M., Yazdani, M., & Kazimieras Zavadskas, E. (2018). Evaluating construction projects of hotels based on environmental sustainability with MCDM framework. Alexandria Engineering Journal, 57(1), 357-365. doi:10.1016/j.aej.2016.11.002 es_ES
dc.description.references Invidiata, A., Lavagna, M., & Ghisi, E. (2018). Selecting design strategies using multi-criteria decision making to improve the sustainability of buildings. Building and Environment, 139, 58-68. doi:10.1016/j.buildenv.2018.04.041 es_ES
dc.description.references Kamali, M., Hewage, K., & Milani, A. S. (2018). Life cycle sustainability performance assessment framework for residential modular buildings: Aggregated sustainability indices. Building and Environment, 138, 21-41. doi:10.1016/j.buildenv.2018.04.019 es_ES
dc.description.references Pons, O., & Aguado, A. (2012). Integrated value model for sustainable assessment applied to technologies used to build schools in Catalonia, Spain. Building and Environment, 53, 49-58. doi:10.1016/j.buildenv.2012.01.007 es_ES
dc.description.references Akadiri, P. O., Olomolaiye, P. O., & Chinyio, E. A. (2013). Multi-criteria evaluation model for the selection of sustainable materials for building projects. Automation in Construction, 30, 113-125. doi:10.1016/j.autcon.2012.10.004 es_ES
dc.description.references Motuzienė, V., Rogoža, A., Lapinskienė, V., & Vilutienė, T. (2016). Construction solutions for energy efficient single-family house based on its life cycle multi-criteria analysis: a case study. Journal of Cleaner Production, 112, 532-541. doi:10.1016/j.jclepro.2015.08.103 es_ES
dc.description.references Samani, P., Mendes, A., Leal, V., Miranda Guedes, J., & Correia, N. (2015). A sustainability assessment of advanced materials for novel housing solutions. Building and Environment, 92, 182-191. doi:10.1016/j.buildenv.2015.04.012 es_ES
dc.description.references AL-Nassar, F., Ruparathna, R., Chhipi-Shrestha, G., Haider, H., Hewage, K., & Sadiq, R. (2016). Sustainability assessment framework for low rise commercial buildings: life cycle impact index-based approach. Clean Technologies and Environmental Policy, 18(8), 2579-2590. doi:10.1007/s10098-016-1168-1 es_ES
dc.description.references ALwaer, H., & Clements-Croome, D. J. (2010). Key performance indicators (KPIs) and priority setting in using the multi-attribute approach for assessing sustainable intelligent buildings. Building and Environment, 45(4), 799-807. doi:10.1016/j.buildenv.2009.08.019 es_ES
dc.description.references Yu, J. Q., Dang, B., Clements-Croome, D., & Xu, S. (2011). Sustainability Assessment Indicators and Methodology for Intelligent Buildings. Advanced Materials Research, 368-373, 3829-3832. doi:10.4028/www.scientific.net/amr.368-373.3829 es_ES
dc.description.references Drejeris, R., & Kavolynas, A. (2014). Multi-criteria Evaluation of Building Sustainability Behavior. Procedia - Social and Behavioral Sciences, 110, 502-511. doi:10.1016/j.sbspro.2013.12.894 es_ES
dc.description.references IGNATIUS, J., RAHMAN, A., YAZDANI, M., ŠAPARAUSKAS, J., & HARON, S. H. (2016). AN INTEGRATED FUZZY ANP–QFD APPROACH FOR GREEN BUILDING ASSESSMENT. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 22(4), 551-563. doi:10.3846/13923730.2015.1120772 es_ES
dc.description.references Amoozad Mahdiraji, H., Arzaghi, S., Stauskis, G., & Zavadskas, E. (2018). A Hybrid Fuzzy BWM-COPRAS Method for Analyzing Key Factors of Sustainable Architecture. Sustainability, 10(5), 1626. doi:10.3390/su10051626 es_ES
dc.description.references San-José Lombera, J.-T., & Garrucho Aprea, I. (2010). A system approach to the environmental analysis of industrial buildings. Building and Environment, 45(3), 673-683. doi:10.1016/j.buildenv.2009.08.012 es_ES
dc.description.references Cuadrado, J., Zubizarreta, M., Rojí, E., García, H., & Larrauri, M. (2015). Sustainability-Related Decision Making in Industrial Buildings: An AHP Analysis. Mathematical Problems in Engineering, 2015, 1-13. doi:10.1155/2015/157129 es_ES
dc.description.references Cuadrado, J., Zubizarreta, M., Rojí, E., Larrauri, M., & Álvarez, I. (2016). Sustainability assessment methodology for industrial buildings: three case studies. Civil Engineering and Environmental Systems, 33(2), 106-124. doi:10.1080/10286608.2016.1148143 es_ES
dc.description.references Heravi, G., Fathi, M., & Faeghi, S. (2017). Multi-criteria group decision-making method for optimal selection of sustainable industrial building options focused on petrochemical projects. Journal of Cleaner Production, 142, 2999-3013. doi:10.1016/j.jclepro.2016.10.168 es_ES
dc.description.references Formisano, A., & Mazzolani, F. M. (2015). On the selection by MCDM methods of the optimal system for seismic retrofitting and vertical addition of existing buildings. Computers & Structures, 159, 1-13. doi:10.1016/j.compstruc.2015.06.016 es_ES
dc.description.references Terracciano, G., Di Lorenzo, G., Formisano, A., & Landolfo, R. (2014). Cold-formed thin-walled steel structures as vertical addition and energetic retrofitting systems of existing masonry buildings. European Journal of Environmental and Civil Engineering, 19(7), 850-866. doi:10.1080/19648189.2014.974832 es_ES
dc.description.references Zavadskas, E. K., & Antucheviciene, J. (2007). Multiple criteria evaluation of rural building’s regeneration alternatives. Building and Environment, 42(1), 436-451. doi:10.1016/j.buildenv.2005.08.001 es_ES
dc.description.references Hosseini, S. M. A., de la Fuente, A., & Pons, O. (2016). Multicriteria Decision-Making Method for Sustainable Site Location of Post-Disaster Temporary Housing in Urban Areas. Journal of Construction Engineering and Management, 142(9), 04016036. doi:10.1061/(asce)co.1943-7862.0001137 es_ES
dc.description.references Malekly, H., Meysam Mousavi, S., & Hashemi, H. (2010). A fuzzy integrated methodology for evaluating conceptual bridge design. Expert Systems with Applications, 37(7), 4910-4920. doi:10.1016/j.eswa.2009.12.024 es_ES
dc.description.references Gervásio, H., & Simões da Silva, L. (2012). A probabilistic decision-making approach for the sustainable assessment of infrastructures. Expert Systems with Applications, 39(8), 7121-7131. doi:10.1016/j.eswa.2012.01.032 es_ES
dc.description.references Balali, V., Mottaghi, A., Shoghli, O., & Golabchi, M. (2014). Selection of Appropriate Material, Construction Technique, and Structural System of Bridges by Use of Multicriteria Decision-Making Method. Transportation Research Record: Journal of the Transportation Research Board, 2431(1), 79-87. doi:10.3141/2431-11 es_ES
dc.description.references Jakiel, P., & Fabianowski, D. (2015). FAHP model used for assessment of highway RC bridge structural and technological arrangements. Expert Systems with Applications, 42(8), 4054-4061. doi:10.1016/j.eswa.2014.12.039 es_ES
dc.description.references Yepes, V., García-Segura, T., & Moreno-Jiménez, J. M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024-1036. doi:10.1016/j.acme.2015.05.001 es_ES
dc.description.references Kripka, M., Yepes, V., & Milani, C. (2019). Selection of Sustainable Short-Span Bridge Design in Brazil. Sustainability, 11(5), 1307. doi:10.3390/su11051307 es_ES
dc.description.references Wang, Y.-M., Liu, J., & Elhag, T. M. S. (2008). An integrated AHP–DEA methodology for bridge risk assessment. Computers & Industrial Engineering, 54(3), 513-525. doi:10.1016/j.cie.2007.09.002 es_ES
dc.description.references Abu Dabous, S., & Alkass, S. (2008). Decision support method for multi‐criteria selection of bridge rehabilitation strategy. Construction Management and Economics, 26(8), 883-893. doi:10.1080/01446190802071190 es_ES
dc.description.references Chen, T.-Y. (2014). The extended linear assignment method for multiple criteria decision analysis based on interval-valued intuitionistic fuzzy sets. Applied Mathematical Modelling, 38(7-8), 2101-2117. doi:10.1016/j.apm.2013.10.017 es_ES
dc.description.references Begić, F., & Afgan, N. H. (2007). Sustainability assessment tool for the decision making in selection of energy system—Bosnian case. Energy, 32(10), 1979-1985. doi:10.1016/j.energy.2007.02.006 es_ES
dc.description.references Cartelle Barros, J. J., Lara Coira, M., de la Cruz López, M. P., & del Caño Gochi, A. (2015). Assessing the global sustainability of different electricity generation systems. Energy, 89, 473-489. doi:10.1016/j.energy.2015.05.110 es_ES
dc.description.references Klein, S. J. W., & Whalley, S. (2015). Comparing the sustainability of U.S. electricity options through multi-criteria decision analysis. Energy Policy, 79, 127-149. doi:10.1016/j.enpol.2015.01.007 es_ES
dc.description.references Montajabiha, M. (2015). An Extended PROMETHE II Multi-Criteria Group Decision Making Technique Based on Intuitionistic Fuzzy Logic for Sustainable Energy Planning. Group Decision and Negotiation, 25(2), 221-244. doi:10.1007/s10726-015-9440-z es_ES
dc.description.references Fetanat, A., & Khorasaninejad, E. (2015). A novel hybrid MCDM approach for offshore wind farm site selection: A case study of Iran. Ocean & Coastal Management, 109, 17-28. doi:10.1016/j.ocecoaman.2015.02.005 es_ES
dc.description.references Medina-González, S., Espuña, A., & Puigjaner, L. (2018). An efficient uncertainty representation for the design of sustainable energy generation systems. Chemical Engineering Research and Design, 131, 144-159. doi:10.1016/j.cherd.2017.11.044 es_ES
dc.description.references Gumus, S., Kucukvar, M., & Tatari, O. (2016). Intuitionistic fuzzy multi-criteria decision making framework based on life cycle environmental, economic and social impacts: The case of U.S. wind energy. Sustainable Production and Consumption, 8, 78-92. doi:10.1016/j.spc.2016.06.006 es_ES
dc.description.references FUENTE, A. de la, ARMENGOU, J., PONS, O., & AGUADO, A. (2016). Multi-criteria decision-making model for assessing the sustainability index of wind-turbine support systems: application to a new precast concrete alternative. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 23(2), 194-203. doi:10.3846/13923730.2015.1023347 es_ES
dc.description.references Afshar, A., Mariño, M. A., Saadatpour, M., & Afshar, A. (2010). Fuzzy TOPSIS Multi-Criteria Decision Analysis Applied to Karun Reservoirs System. Water Resources Management, 25(2), 545-563. doi:10.1007/s11269-010-9713-x es_ES
dc.description.references Sun, X., Ning, P., Tang, X., Yi, H., Li, K., Zhou, L., & Xu, X. (2013). Environmental Risk Assessment System for Phosphogypsum Tailing Dams. The Scientific World Journal, 2013, 1-13. doi:10.1155/2013/680798 es_ES
dc.description.references Martin, C., Ruperd, Y., & Legret, M. (2007). Urban stormwater drainage management: The development of a multicriteria decision aid approach for best management practices. European Journal of Operational Research, 181(1), 338-349. doi:10.1016/j.ejor.2006.06.019 es_ES
dc.description.references Dong, X., Zeng, S., Chen, J., & Zhao, D. (2008). An integrated assessment method of urban drainage system: A case study in Shenzhen City, China. Frontiers of Environmental Science & Engineering in China, 2(2), 150-156. doi:10.1007/s11783-008-0014-z es_ES
dc.description.references Tahmasebi Birgani, Y., & Yazdandoost, F. (2018). An Integrated Framework to Evaluate Resilient-Sustainable Urban Drainage Management Plans Using a Combined-adaptive MCDM Technique. Water Resources Management, 32(8), 2817-2835. doi:10.1007/s11269-018-1960-2 es_ES
dc.description.references De la Fuente, A., Pons, O., Josa, A., & Aguado, A. (2016). Multi-Criteria Decision Making in the sustainability assessment of sewerage pipe systems. Journal of Cleaner Production, 112, 4762-4770. doi:10.1016/j.jclepro.2015.07.002 es_ES
dc.description.references Onu, U. P., Xie, Q., & Xu, L. (2017). A Fuzzy TOPSIS model Framework for Ranking Sustainable Water Supply Alternatives. Water Resources Management, 31(9), 2579-2593. doi:10.1007/s11269-017-1636-3 es_ES
dc.description.references Chhipi-Shrestha, G., Hewage, K., & Sadiq, R. (2017). Selecting Sustainability Indicators for Small to Medium Sized Urban Water Systems Using Fuzzy-ELECTRE. Water Environment Research, 89(3), 238-249. doi:10.2175/106143016x14798353399494 es_ES
dc.description.references Kucukvar, M., Gumus, S., Egilmez, G., & Tatari, O. (2014). Ranking the sustainability performance of pavements: An intuitionistic fuzzy decision making method. Automation in Construction, 40, 33-43. doi:10.1016/j.autcon.2013.12.009 es_ES
dc.description.references Jato-Espino, D., Rodriguez-Hernandez, J., Andrés-Valeri, V. C., & Ballester-Muñoz, F. (2014). A fuzzy stochastic multi-criteria model for the selection of urban pervious pavements. Expert Systems with Applications, 41(15), 6807-6817. doi:10.1016/j.eswa.2014.05.008 es_ES
dc.description.references Torres-Machí, C., Chamorro, A., Pellicer, E., Yepes, V., & Videla, C. (2015). Sustainable Pavement Management. Transportation Research Record: Journal of the Transportation Research Board, 2523(1), 56-63. doi:10.3141/2523-07 es_ES
dc.description.references Santos, J., Bressi, S., Cerezo, V., & Lo Presti, D. (2019). SUP&R DSS: A sustainability-based decision support system for road pavements. Journal of Cleaner Production, 206, 524-540. doi:10.1016/j.jclepro.2018.08.308 es_ES
dc.description.references Oses, U., Rojí, E., Cuadrado, J., & Larrauri, M. (2018). Multiple-Criteria Decision-Making Tool for Local Governments to Evaluate the Global and Local Sustainability of Transportation Systems in Urban Areas: Case Study. Journal of Urban Planning and Development, 144(1), 04017019. doi:10.1061/(asce)up.1943-5444.0000406 es_ES
dc.description.references Asgari, N., Hassani, A., Jones, D., & Nguye, H. H. (2015). Sustainability ranking of the UK major ports: Methodology and case study. Transportation Research Part E: Logistics and Transportation Review, 78, 19-39. doi:10.1016/j.tre.2015.01.014 es_ES
dc.description.references Banias, G., Achillas, C., Vlachokostas, C., Moussiopoulos, N., & Tarsenis, S. (2010). Assessing multiple criteria for the optimal location of a construction and demolition waste management facility. Building and Environment, 45(10), 2317-2326. doi:10.1016/j.buildenv.2010.04.016 es_ES
dc.description.references Rochikashvili, M., & Bongaerts, J. C. (2016). Multi-criteria Decision-making for Sustainable Wall Paints and Coatings Using Analytic Hierarchy Process. Energy Procedia, 96, 923-933. doi:10.1016/j.egypro.2016.09.167 es_ES
dc.description.references Ugwu, O. O., & Haupt, T. C. (2007). Key performance indicators and assessment methods for infrastructure sustainability—a South African construction industry perspective. Building and Environment, 42(2), 665-680. doi:10.1016/j.buildenv.2005.10.018 es_ES
dc.description.references Reyes, J. P., San-José, J. T., Cuadrado, J., & Sancibrian, R. (2014). Health & Safety criteria for determining the sustainable value of construction projects. Safety Science, 62, 221-232. doi:10.1016/j.ssci.2013.08.023 es_ES
dc.description.references Dobrovolskienė, N., & Tamošiūnienė, R. (2015). An Index to Measure Sustainability of a Business Project in the Construction Industry: Lithuanian Case. Sustainability, 8(1), 14. doi:10.3390/su8010014 es_ES
dc.description.references Marzouk, M., & Azab, S. (2014). Environmental and economic impact assessment of construction and demolition waste disposal using system dynamics. Resources, Conservation and Recycling, 82, 41-49. doi:10.1016/j.resconrec.2013.10.015 es_ES
dc.description.references Navarro, I. J., Yepes, V., & Martí, J. V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72, 50-63. doi:10.1016/j.eiar.2018.05.003 es_ES
dc.description.references Brans, J. P., & Vincke, P. (1985). Note—A Preference Ranking Organisation Method. Management Science, 31(6), 647-656. doi:10.1287/mnsc.31.6.647 es_ES
dc.description.references Kabir, G., Sadiq, R., & Tesfamariam, S. (2013). A review of multi-criteria decision-making methods for infrastructure management. Structure and Infrastructure Engineering, 10(9), 1176-1210. doi:10.1080/15732479.2013.795978 es_ES
dc.description.references Podvezko, V. (2011). The Comparative Analysis of MCDA Methods SAW and COPRAS. Engineering Economics, 22(2). doi:10.5755/j01.ee.22.2.310 es_ES
dc.description.references Kaya, İ., Çolak, M., & Terzi, F. (2018). Use of MCDM techniques for energy policy and decision-making problems: A review. International Journal of Energy Research, 42(7), 2344-2372. doi:10.1002/er.4016 es_ES
dc.description.references Mardani, A., Jusoh, A., MD Nor, K., Khalifah, Z., Zakwan, N., & Valipour, A. (2015). Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014. Economic Research-Ekonomska Istraživanja, 28(1), 516-571. doi:10.1080/1331677x.2015.1075139 es_ES
dc.description.references Sitorus, F., Cilliers, J. J., & Brito-Parada, P. R. (2019). Multi-criteria decision making for the choice problem in mining and mineral processing: Applications and trends. Expert Systems with Applications, 121, 393-417. doi:10.1016/j.eswa.2018.12.001 es_ES
dc.description.references Ilgin, M. A., Gupta, S. M., & Battaïa, O. (2015). Use of MCDM techniques in environmentally conscious manufacturing and product recovery: State of the art. Journal of Manufacturing Systems, 37, 746-758. doi:10.1016/j.jmsy.2015.04.010 es_ES
dc.description.references Khan, S. A., Chaabane, A., & Dweiri, F. T. (2018). Multi-Criteria Decision-Making Methods Application in Supply Chain Management: A Systematic Literature Review. Multi-Criteria Methods and Techniques Applied to Supply Chain Management. doi:10.5772/intechopen.74067 es_ES
dc.description.references Noryani, M., Sapuan, S. M., & Mastura, M. T. (2018). Multi-criteria decision-making tools for material selection of natural fibre composites: A review. JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES, 12(1), 3330-3353. doi:10.15282/jmes.12.1.2018.5.0299 es_ES
dc.description.references Scholten, L., Schuwirth, N., Reichert, P., & Lienert, J. (2015). Tackling uncertainty in multi-criteria decision analysis – An application to water supply infrastructure planning. European Journal of Operational Research, 242(1), 243-260. doi:10.1016/j.ejor.2014.09.044 es_ES
dc.description.references Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-x es_ES
dc.description.references Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96. doi:10.1016/s0165-0114(86)80034-3 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem