- -

Small Wind Turbine Emulator Based on Lambda-Cp Curves Obtained under Real Operating Conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Small Wind Turbine Emulator Based on Lambda-Cp Curves Obtained under Real Operating Conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez-Márquez, Camilo I. es_ES
dc.contributor.author Twizere-Bakunda, Jackson D. es_ES
dc.contributor.author Lundbäck-Mompó, David es_ES
dc.contributor.author Orts-Grau, Salvador es_ES
dc.contributor.author Gimeno Sales, Francisco José es_ES
dc.contributor.author Segui-Chilet, Salvador es_ES
dc.date.accessioned 2020-02-23T21:01:02Z
dc.date.available 2020-02-23T21:01:02Z
dc.date.issued 2019 es_ES
dc.identifier.uri http://hdl.handle.net/10251/137619
dc.description.abstract [EN] This paper proposes a new on-site technique for the experimental characterization of small wind systems by emulating the behavior of a wind tunnel facility. Due to the high cost and complexity of these facilities, many manufacturers of small wind systems do not have a well knowledge of the characteristic lambda-Cp curve of their turbines. Therefore, power electronics converters connected to the wind generator are usually programmed with speed/power control curves that do not optimize the power generation. The characteristic lambda-Cp curves obtained through the proposed method will help manufacturers to obtain optimized speed/power control curves. In addition, a low cost small wind emulator has been designed. Programmed with the experimental lambda-Cp curve, it can validate, improve, and develop new control algorithms to maximize the energy generation. The emulator is completed with a new graphic user interface that monitors in real time both the value of the lambda-Cp coordinate and the operating point on the 3D working surface generated with the characteristic lambda-Cp curve obtained from the real small wind system. The proposed method has been applied to a small wind turbine commercial model. The experimental results demonstrate that the point of operation obtained with the emulator is always located on the 3D surface, at the same coordinates (rotor speed/wind speed/power) as the ones obtained experimentally, validating the designed emulator. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Wind turbine emulator es_ES
dc.subject Wind turbine energy systems es_ES
dc.subject Renewable energies es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Small Wind Turbine Emulator Based on Lambda-Cp Curves Obtained under Real Operating Conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en12132456 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Martínez-Márquez, CI.; Twizere-Bakunda, JD.; Lundbäck-Mompó, D.; Orts-Grau, S.; Gimeno Sales, FJ.; Segui-Chilet, S. (2019). Small Wind Turbine Emulator Based on Lambda-Cp Curves Obtained under Real Operating Conditions. Energies. 12(13):1-17. https://doi.org/10.3390/en12132456 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en12132456 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 13 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\403310 es_ES
dc.description.references Nichita, C., Luca, D., Dakyo, B., & Ceanga, E. (2002). Large band simulation of the wind speed for real time wind turbine simulators. IEEE Transactions on Energy Conversion, 17(4), 523-529. doi:10.1109/tec.2002.805216 es_ES
dc.description.references Pillay, P., & Krishnan, R. (1988). Modeling of permanent magnet motor drives. IEEE Transactions on Industrial Electronics, 35(4), 537-541. doi:10.1109/41.9176 es_ES
dc.description.references Tanvir, A., Merabet, A., & Beguenane, R. (2015). Real-Time Control of Active and Reactive Power for Doubly Fed Induction Generator (DFIG)-Based Wind Energy Conversion System. Energies, 8(9), 10389-10408. doi:10.3390/en80910389 es_ES
dc.description.references Martinez, F., Herrero, L. C., & de Pablo, S. (2014). Open loop wind turbine emulator. Renewable Energy, 63, 212-221. doi:10.1016/j.renene.2013.09.019 es_ES
dc.description.references Castelló, J., Espí, J. M., & García-Gil, R. (2016). Development details and performance assessment of a Wind Turbine Emulator. Renewable Energy, 86, 848-857. doi:10.1016/j.renene.2015.09.010 es_ES
dc.description.references Kojabadi, H. M., Chang, L., & Boutot, T. (2004). Development of a Novel Wind Turbine Simulator for Wind Energy Conversion Systems Using an Inverter-Controlled Induction Motor. IEEE Transactions on Energy Conversion, 19(3), 547-552. doi:10.1109/tec.2004.832070 es_ES
dc.description.references Choy, Y.-D., Han, B.-M., Lee, J.-Y., & Jang, G.-S. (2011). Real-Time Hardware Simulator for Grid-Tied PMSG Wind Power System. Journal of Electrical Engineering and Technology, 6(3), 375-383. doi:10.5370/jeet.2011.6.3.375 es_ES
dc.description.references Wasynczuk, O., Man, D. T., & Sullivan, J. P. (1981). Dynamic Behavior of a Class of Wind Turbine Generators during Random Wind Fluctuations. IEEE Power Engineering Review, PER-1(6), 47-48. doi:10.1109/mper.1981.5511593 es_ES
dc.description.references Dai, J., Liu, D., Wen, L., & Long, X. (2016). Research on power coefficient of wind turbines based on SCADA data. Renewable Energy, 86, 206-215. doi:10.1016/j.renene.2015.08.023 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem