Mostrar el registro sencillo del ítem
dc.contributor.author | Lechago-Buendia, Sergio | es_ES |
dc.contributor.author | García Meca, Carlos | es_ES |
dc.contributor.author | Sánchez Losilla, Nuria | es_ES |
dc.contributor.author | Griol Barres, Amadeu | es_ES |
dc.contributor.author | Martí Sendra, Javier | es_ES |
dc.date.accessioned | 2020-02-23T21:01:05Z | |
dc.date.available | 2020-02-23T21:01:05Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1094-4087 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/137620 | |
dc.description.abstract | [EN] We experimentally demonstrate an all-silicon nanoantenna-based micro-optofluidic cytometer showing a combination of high signal-to-noise ratio (SNR) > 14 dB and ultra-compact size. Thanks to the ultra-high directivity of the antennas (>150), which enables a state-of-the-art sub-micron resolution, we are able to avoid the use of the bulky devices typically employed to collimate light on chip (such as lenses or fibers). The nm-scale antenna cross section allows a dramatic reduction of the optical system footprint, from the mm-scale of previous approaches to a few mu m(2), yielding a notable reduction in the fabrication costs. This scheme paves the way to ultra-compact lab-on-a-chip devices that may enable new applications with potential impact on all branches of biological and health science. | es_ES |
dc.description.sponsorship | Funding from grant TEC2015-63838-C3-1-R OPTONANOSENS (MINECO/FEDER, UE) is acknowledged. C. G.-M. acknowledges support from project TEC2015-73581-JIN PHUTURE (AEI/FEDER, UE). This work was also supported by the EU-funded projects FP7-ICT PHOXTROT (No. 318240), the EU-funded H2020-FET-HPC EXANEST (No. 671553) and the Generalitat Valenciana's PROMETEO grant NANOMET PLUS (PROMETEO II/2014/34). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Optical Society | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Integrated optics | es_ES |
dc.subject | Biological sensing and sensors | es_ES |
dc.subject | Nanophotonics and photonic crystals. | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | High signal-to-noise ratio ultra-compact lab-on-a-chip microflow cytometer enabled by silicon optical antennas | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.26.025645 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2015-63838-C3-1-R/ES/DETECCION DE TOXINAS Y AGENTES PATOGENOS MEDIANTE BIOSENSORES OPTICOS NANOMETRICOS PARA AMENAZAS NBQ/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/318240/EU/Photonics for High-Performance, Low-Cost & Low-Energy Data Centers, High Performance Computing Systems:Terabit/s Optical Interconnect Technologies for On-Board, Board-to-Board, Rack-to-Rack data links/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2015-73581-JIN/ES/HACIA UNA NUEVA GENERACION DE CIRCUITOS INTEGRADOS FOTONICOS BASADOS EN OPTICA DE TRANSFORMACION, METASUPERFICIES Y MATERIALES RECONFIGURABLES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/671553/EU/European Exascale System Interconnect and Storage/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F034/ES/Nanomet Plus/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.description.bibliographicCitation | Lechago-Buendia, S.; García Meca, C.; Sánchez Losilla, N.; Griol Barres, A.; Martí Sendra, J. (2018). High signal-to-noise ratio ultra-compact lab-on-a-chip microflow cytometer enabled by silicon optical antennas. Optics Express. 26(20):25645-25656. https://doi.org/10.1364/OE.26.025645 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1364/OE.26.025645 | es_ES |
dc.description.upvformatpinicio | 25645 | es_ES |
dc.description.upvformatpfin | 25656 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | es_ES |
dc.description.issue | 20 | es_ES |
dc.relation.pasarela | S\368900 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Redding, B., Liew, S. F., Sarma, R., & Cao, H. (2013). Compact spectrometer based on a disordered photonic chip. Nature Photonics, 7(9), 746-751. doi:10.1038/nphoton.2013.190 | es_ES |
dc.description.references | Malinauskas, M., Žukauskas, A., Hasegawa, S., Hayasaki, Y., Mizeikis, V., Buividas, R., & Juodkazis, S. (2016). Ultrafast laser processing of materials: from science to industry. Light: Science & Applications, 5(8), e16133-e16133. doi:10.1038/lsa.2016.133 | es_ES |
dc.description.references | Fan, X., & White, I. M. (2011). Optofluidic microsystems for chemical and biological analysis. Nature Photonics, 5(10), 591-597. doi:10.1038/nphoton.2011.206 | es_ES |
dc.description.references | Zheludev, N. I., & Kivshar, Y. S. (2012). From metamaterials to metadevices. Nature Materials, 11(11), 917-924. doi:10.1038/nmat3431 | es_ES |
dc.description.references | Zhang, Y., Watts, B., Guo, T., Zhang, Z., Xu, C., & Fang, Q. (2016). Optofluidic Device Based Microflow Cytometers for Particle/Cell Detection: A Review. Micromachines, 7(4), 70. doi:10.3390/mi7040070 | es_ES |
dc.description.references | Chen, X., Li, C., & Tsang, H. K. (2011). Device engineering for silicon photonics. NPG Asia Materials, 3(1), 34-40. doi:10.1038/asiamat.2010.194 | es_ES |
dc.description.references | Luka, G., Ahmadi, A., Najjaran, H., Alocilja, E., DeRosa, M., Wolthers, K., … Hoorfar, M. (2015). Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications. Sensors, 15(12), 30011-30031. doi:10.3390/s151229783 | es_ES |
dc.description.references | Padgett, M., & Bowman, R. (2011). Tweezers with a twist. Nature Photonics, 5(6), 343-348. doi:10.1038/nphoton.2011.81 | es_ES |
dc.description.references | Yih Shiau. (1976). Dielectric Rod Antennas for Millimeter-Wave Integrated Circuits (Short Papers). IEEE Transactions on Microwave Theory and Techniques, 24(11), 869-872. doi:10.1109/tmtt.1976.1128980 | es_ES |
dc.description.references | Brongersma, M. L. (2008). Engineering optical nanoantennas. Nature Photonics, 2(5), 270-272. doi:10.1038/nphoton.2008.60 | es_ES |
dc.description.references | Alù, A., & Engheta, N. (2010). Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas. Physical Review Letters, 104(21). doi:10.1103/physrevlett.104.213902 | es_ES |
dc.description.references | Novotny, L., & van Hulst, N. (2011). Antennas for light. Nature Photonics, 5(2), 83-90. doi:10.1038/nphoton.2010.237 | es_ES |
dc.description.references | Giannini, V., Fernández-Domínguez, A. I., Heck, S. C., & Maier, S. A. (2011). Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters. Chemical Reviews, 111(6), 3888-3912. doi:10.1021/cr1002672 | es_ES |
dc.description.references | Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S., & Watts, M. R. (2013). Large-scale nanophotonic phased array. Nature, 493(7431), 195-199. doi:10.1038/nature11727 | es_ES |
dc.description.references | Van Acoleyen, K., Rogier, H., & Baets, R. (2010). Two-dimensional optical phased array antenna on silicon-on-Insulator. Optics Express, 18(13), 13655. doi:10.1364/oe.18.013655 | es_ES |
dc.description.references | García-Meca, C., Lechago, S., Brimont, A., Griol, A., Mas, S., Sánchez, L., … Martí, J. (2017). On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices. Light: Science & Applications, 6(9), e17053-e17053. doi:10.1038/lsa.2017.53 | es_ES |
dc.description.references | Robinson, J. P., & Roederer, M. (2015). Flow cytometry strikes gold. Science, 350(6262), 739-740. doi:10.1126/science.aad6770 | es_ES |
dc.description.references | Mao, X., Nawaz, A. A., Lin, S.-C. S., Lapsley, M. I., Zhao, Y., McCoy, J. P., … Huang, T. J. (2012). An integrated, multiparametric flow cytometry chip using «microfluidic drifting» based three-dimensional hydrodynamic focusing. Biomicrofluidics, 6(2), 024113. doi:10.1063/1.3701566 | es_ES |
dc.description.references | Huang, N.-T., Zhang, H., Chung, M.-T., Seo, J. H., & Kurabayashi, K. (2014). Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection. Lab Chip, 14(7), 1230-1245. doi:10.1039/c3lc51211h | es_ES |
dc.description.references | Psaltis, D., Quake, S. R., & Yang, C. (2006). Developing optofluidic technology through the fusion of microfluidics and optics. Nature, 442(7101), 381-386. doi:10.1038/nature05060 | es_ES |
dc.description.references | Cheung, K. C., Di Berardino, M., Schade-Kampmann, G., Hebeisen, M., Pierzchalski, A., Bocsi, J., … Tárnok, A. (2010). Microfluidic impedance-based flow cytometry. Cytometry Part A, 77A(7), 648-666. doi:10.1002/cyto.a.20910 | es_ES |
dc.description.references | Cheung, K., Gawad, S., & Renaud, P. (2005). Impedance spectroscopy flow cytometry: On-chip label-free cell differentiation. Cytometry Part A, 65A(2), 124-132. doi:10.1002/cyto.a.20141 | es_ES |
dc.description.references | Xie, X., Cheng, Z., Xu, Y., Liu, R., Li, Q., & Cheng, J. (2017). A sheath-less electric impedance micro-flow cytometry device for rapid label-free cell classification and viability testing. Analytical Methods, 9(7), 1201-1212. doi:10.1039/c6ay03326a | es_ES |
dc.description.references | Blasi, T., Hennig, H., Summers, H. D., Theis, F. J., Cerveira, J., Patterson, J. O., … Rees, P. (2016). Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nature Communications, 7(1). doi:10.1038/ncomms10256 | es_ES |
dc.description.references | Soref, R. (2006). The Past, Present, and Future of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1678-1687. doi:10.1109/jstqe.2006.883151 | es_ES |
dc.description.references | Frankowski, M., Theisen, J., Kummrow, A., Simon, P., Ragusch, H., Bock, N., … Neukammer, J. (2013). Microflow Cytometers with Integrated Hydrodynamic Focusing. Sensors, 13(4), 4674-4693. doi:10.3390/s130404674 | es_ES |
dc.description.references | Barat, D., Spencer, D., Benazzi, G., Mowlem, M. C., & Morgan, H. (2012). Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer. Lab Chip, 12(1), 118-126. doi:10.1039/c1lc20785g | es_ES |
dc.description.references | Testa, G., Persichetti, G., & Bernini, R. (2014). Micro flow cytometer with self-aligned 3D hydrodynamic focusing. Biomedical Optics Express, 6(1), 54. doi:10.1364/boe.6.000054 | es_ES |
dc.description.references | Etcheverry, S., Faridi, A., Ramachandraiah, H., Kumar, T., Margulis, W., Laurell, F., & Russom, A. (2017). High performance micro-flow cytometer based on optical fibres. Scientific Reports, 7(1). doi:10.1038/s41598-017-05843-7 | es_ES |
dc.description.references | Kosako, T., Kadoya, Y., & Hofmann, H. F. (2010). Directional control of light by a nano-optical Yagi–Uda antenna. Nature Photonics, 4(5), 312-315. doi:10.1038/nphoton.2010.34 | es_ES |
dc.description.references | Taillaert, D., Van Laere, F., Ayre, M., Bogaerts, W., Van Thourhout, D., Bienstman, P., & Baets, R. (2006). Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides. Japanese Journal of Applied Physics, 45(8A), 6071-6077. doi:10.1143/jjap.45.6071 | es_ES |
dc.description.references | Potcoava, M. C., Futia, G. L., Aughenbaugh, J., Schlaepfer, I. R., & Gibson, E. A. (2014). Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells. Journal of Biomedical Optics, 19(11), 111605. doi:10.1117/1.jbo.19.11.111605 | es_ES |
dc.description.references | Traub, M. C., Longsine, W., & Truskett, V. N. (2016). Advances in Nanoimprint Lithography. Annual Review of Chemical and Biomolecular Engineering, 7(1), 583-604. doi:10.1146/annurev-chembioeng-080615-034635 | es_ES |
dc.description.references | Xu, B.-B., Zhang, Y.-L., Xia, H., Dong, W.-F., Ding, H., & Sun, H.-B. (2013). Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing. Lab on a Chip, 13(9), 1677. doi:10.1039/c3lc50160d | es_ES |
dc.description.references | Zucker, R. M., Ortenzio, J. N. R., & Boyes, W. K. (2015). Characterization, detection, and counting of metal nanoparticles using flow cytometry. Cytometry Part A, 89(2), 169-183. doi:10.1002/cyto.a.22793 | es_ES |
dc.description.references | Kowalczyk, B., Lagzi, I., & Grzybowski, B. A. (2011). Nanoseparations: Strategies for size and/or shape-selective purification of nanoparticles. Current Opinion in Colloid & Interface Science, 16(2), 135-148. doi:10.1016/j.cocis.2011.01.004 | es_ES |