- -

VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Salas, Jorge es_ES
dc.contributor.author Yepes, V. es_ES
dc.date.accessioned 2020-02-26T21:00:50Z
dc.date.available 2020-02-26T21:00:50Z
dc.date.issued 2019 es_ES
dc.identifier.uri http://hdl.handle.net/10251/137886
dc.description.abstract [EN] Many-objective optimization methods have proven successful in the integration of research attributes demanded for urban vulnerability assessment models. However, these techniques suffer from the curse of the dimensionality problem, producing an excessive burden in the decision-making process by compelling decision-makers to select alternatives among a large number of candidates. In other fields, this problem has been alleviated through cluster analysis, but there is still a lack in the application of such methods for urban vulnerability assessment purposes. This work addresses this gap by a novel combination of visual analytics and cluster analysis, enabling the decision-maker to select the set of indicators best representing urban vulnerability accordingly to three criteria: expert¿s preferences, goodness of fit, and robustness. Based on an assessment framework previously developed, VisualUVAM affords an evaluation of urban vulnerability in Spain at regional, provincial, and municipal scales, whose results demonstrate the effect of the governmental structure of a territory over the vulnerability of the assessed entities. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministry of Economy and Competitiveness, along with FEDER, grant number Project: BIA2017-85098-R". es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sustainability es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Multi-scale assessment es_ES
dc.subject Visual analytics es_ES
dc.subject Cluster analysis es_ES
dc.subject Curse of dimensionality es_ES
dc.subject Urban vulnerability assessment es_ES
dc.subject Many-objective es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/su11082191 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Salas, J.; Yepes, V. (2019). VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain. Sustainability. 11(8):2191-01-2191-17. https://doi.org/10.3390/su11082191 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/su11082191 es_ES
dc.description.upvformatpinicio 2191-01 es_ES
dc.description.upvformatpfin 2191-17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2071-1050 es_ES
dc.relation.pasarela S\382653 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Rigillo, M., & Cervelli, E. (2014). Mapping Urban Vulnerability: The Case Study of Gran Santo Domingo, Dominican Republic. Advanced Engineering Forum, 11, 142-148. doi:10.4028/www.scientific.net/aef.11.142 es_ES
dc.description.references Malekpour, S., Brown, R. R., & de Haan, F. J. (2015). Strategic planning of urban infrastructure for environmental sustainability: Understanding the past to intervene for the future. Cities, 46, 67-75. doi:10.1016/j.cities.2015.05.003 es_ES
dc.description.references Salas, J., & Yepes, V. (2018). Urban vulnerability assessment: Advances from the strategic planning outlook. Journal of Cleaner Production, 179, 544-558. doi:10.1016/j.jclepro.2018.01.088 es_ES
dc.description.references Moraci, F., Errigo, M., Fazia, C., Burgio, G., & Foresta, S. (2018). Making Less Vulnerable Cities: Resilience as a New Paradigm of Smart Planning. Sustainability, 10(3), 755. doi:10.3390/su10030755 es_ES
dc.description.references De Gregorio Hurtado, S. (2017). Is EU urban policy transforming urban regeneration in Spain? Answers from an analysis of the Iniciativa Urbana (2007–2013). Cities, 60, 402-414. doi:10.1016/j.cities.2016.10.015 es_ES
dc.description.references Salas, J., & Yepes, V. (2019). MS-ReRO and D-ROSE methods: Assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, 216, 607-623. doi:10.1016/j.jclepro.2018.12.083 es_ES
dc.description.references Dor, A., & Kissinger, M. (2017). A multi-year, multi-scale analysis of urban sustainability. Environmental Impact Assessment Review, 62, 115-121. doi:10.1016/j.eiar.2016.05.004 es_ES
dc.description.references Rega, C., Singer, J. P., & Geneletti, D. (2018). Investigating the substantive effectiveness of Strategic Environmental Assessment of urban planning: Evidence from Italy and Spain. Environmental Impact Assessment Review, 73, 60-69. doi:10.1016/j.eiar.2018.07.004 es_ES
dc.description.references Salas, J., & Yepes, V. (2018). A discursive, many-objective approach for selecting more-evolved urban vulnerability assessment models. Journal of Cleaner Production, 176, 1231-1244. doi:10.1016/j.jclepro.2017.11.249 es_ES
dc.description.references Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2016). A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability, 8(12), 1295. doi:10.3390/su8121295 es_ES
dc.description.references Zio, E., & Bazzo, R. (2011). A clustering procedure for reducing the number of representative solutions in the Pareto Front of multiobjective optimization problems. European Journal of Operational Research, 210(3), 624-634. doi:10.1016/j.ejor.2010.10.021 es_ES
dc.description.references Ishibuchi, H., Akedo, N., & Nojima, Y. (2015). Behavior of Multiobjective Evolutionary Algorithms on Many-Objective Knapsack Problems. IEEE Transactions on Evolutionary Computation, 19(2), 264-283. doi:10.1109/tevc.2014.2315442 es_ES
dc.description.references A fast and effective method for pruning of non-dominated solutions in many-objective problems https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750253049&partnerID=40&md5=f46109796025a884fd054d73e71c308e es_ES
dc.description.references Taboada, H. A., Baheranwala, F., Coit, D. W., & Wattanapongsakorn, N. (2007). Practical solutions for multi-objective optimization: An application to system reliability design problems. Reliability Engineering & System Safety, 92(3), 314-322. doi:10.1016/j.ress.2006.04.014 es_ES
dc.description.references Kasprzyk, J. R., Nataraj, S., Reed, P. M., & Lempert, R. J. (2013). Many objective robust decision making for complex environmental systems undergoing change. Environmental Modelling & Software, 42, 55-71. doi:10.1016/j.envsoft.2012.12.007 es_ES
dc.description.references Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16(3), 268-281. doi:10.1016/j.gloenvcha.2006.02.006 es_ES
dc.description.references A new decision sciences for complex systems http://people.physics.anu.edu.au/~tas110/Teaching/Lectures/L1/Material/Lempert02.pdf es_ES
dc.description.references Thomas, J., & Kielman, J. (2009). Challenges for Visual Analytics. Information Visualization, 8(4), 309-314. doi:10.1057/ivs.2009.26 es_ES
dc.description.references Andrienko, G., Andrienko, N., Demsar, U., Dransch, D., Dykes, J., Fabrikant, S. I., … Tominski, C. (2010). Space, time and visual analytics. International Journal of Geographical Information Science, 24(10), 1577-1600. doi:10.1080/13658816.2010.508043 es_ES
dc.description.references Santos, J., Ferreira, A., & Flintsch, G. (2017). A multi-objective optimization-based pavement management decision-support system for enhancing pavement sustainability. Journal of Cleaner Production, 164, 1380-1393. doi:10.1016/j.jclepro.2017.07.027 es_ES
dc.description.references Análisis urbanístico de barrios vulnerables https://www.fomento.gob.es/MFOM/LANG_CASTELLANO/DIRECCIONES_GENERALES/ARQ_VIVIENDA/SUELO_Y_POLITICAS/OBSERVATORIO/Analisis_urba_Barrios_Vulnerables/Informes_CCAA.htm es_ES
dc.description.references Birkmann, J., Garschagen, M., & Setiadi, N. (2014). New challenges for adaptive urban governance in highly dynamic environments: Revisiting planning systems and tools for adaptive and strategic planning. Urban Climate, 7, 115-133. doi:10.1016/j.uclim.2014.01.006 es_ES
dc.description.references Besagni, G., & Borgarello, M. (2019). The socio-demographic and geographical dimensions of fuel poverty in Italy. Energy Research & Social Science, 49, 192-203. doi:10.1016/j.erss.2018.11.007 es_ES
dc.description.references Khalil, N., Kamaruzzaman, S. N., & Baharum, M. R. (2016). Ranking the indicators of building performance and the users’ risk via Analytical Hierarchy Process (AHP): Case of Malaysia. Ecological Indicators, 71, 567-576. doi:10.1016/j.ecolind.2016.07.032 es_ES
dc.description.references Pellicer, E., Sierra, L. A., & Yepes, V. (2016). Appraisal of infrastructure sustainability by graduate students using an active-learning method. Journal of Cleaner Production, 113, 884-896. doi:10.1016/j.jclepro.2015.11.010 es_ES
dc.description.references Sierra, L. A., Yepes, V., & Pellicer, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187, 496-513. doi:10.1016/j.jclepro.2018.03.022 es_ES
dc.description.references Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9-26. doi:10.1016/0377-2217(90)90057-i es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem