Mostrar el registro sencillo del ítem
dc.contributor.author | Romero, Manuel L. | es_ES |
dc.contributor.author | Albero Gabarda, Vicente | es_ES |
dc.contributor.author | Espinós Capilla, Ana | es_ES |
dc.contributor.author | Hospitaler Pérez, Antonio | es_ES |
dc.date.accessioned | 2020-02-27T21:01:41Z | |
dc.date.available | 2020-02-27T21:01:41Z | |
dc.date.issued | 2019 | es_ES |
dc.identifier.issn | 0038-9145 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/137954 | |
dc.description.abstract | [DE] Die Slim-Floor-Bauweise ist eine erprobte und wirtschaftliche Lösung. Sie ermöglicht unter anderem eine erhebliche Reduzierung der Deckenstärke und wird zunehmend in Industrieund Gewerbegebäuden eingesetzt. Darüber hinaus erzielen Slim-Floor-Träger, da sie größtenteils in die Decke integriert sind und somit nur die untere angeschweißte Platte direkt einem Brand ausgesetzt wird, einen wesentlich höheren Feuerwiderstand als etwa klassische Verbundträger. In Eurocode 4 Teil 1-2 finden sich zwar vereinfachte Methoden zur Bestimmung der Bauteiltemperaturen von Verbundträgern mit und ohne Kammerbeton, jedoch gibt diese Norm keine vereinfachte Methode zur Bestimmung der Temperaturen eines Slim-FloorQuerschnitts an. In den letzten Jahren wurden vereinfachte Modelle zur Bestimmung der Temperaturverteilung von SlimFloor-Querschnitten entwickelt. Diese derzeit verfügbaren Modelle liefern Ergebnisse auf der sicheren Seite und können für eine praktische Anwendung durchaus empfohlen werden. In diesem Artikel wird gezeigt, dass Slim-Floor-Träger während eines Brandereignisses eine exzellente Tragfähigkeit besitzen. Insbesondere können für Ausnutzungsgrade von 0,5 bis 0,6 die Anforderungen an die Feuerwiderstandsklasse R60 erfüllt werden. Die Feuerwiderstandsklassen R90 und R120 können durch Anwendung innovativer Lösungen, durch verbesserte Materialien oder auch passiven Brandschutz erfüllt werden. | es_ES |
dc.description.abstract | [EN] Slim-floor beams are a well-known and cost-effective solution that permits a significant reduction of floor thickness, and are increasingly used in industrial and commercial buildings. Since only their lower flange is exposed to fire, slim-floor beams may also achieve higher fire resistance, in comparison to other types of composite beams that are not fully embedded in the concrete floor. Simplified models are available in Eurocode 4 Parts 1-2 to evaluate the temperature distribution for partially encased and non-encased composite beams. However this standard does not provide any simplified model to evaluate the cross-sectional temperature field of slim-floor beams. In this sense, different proposals have been evaluated in recent years in order to provide simplified models for temperature evaluation. The currently available models in the literature have shown their accurate behaviour providing results on the safe side, and are recommended for use in practice. Finally, this work shows that slim-floor composite beams can provide good performance during a fire event. Specifically, 60 min of standard fire rating can be achieved for load levels lower than 0.5-0.6. Improved behaviour to achieve 90 or 120 min of standard fire exposure may also be reached by using innovative solutions, advanced materials or external protection. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Stahlbau | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Slim-floor beams | es_ES |
dc.subject | Fire resistance | es_ES |
dc.subject | Fire design | es_ES |
dc.subject | Simplified design methods | es_ES |
dc.subject | Slim-Floor-Träger | es_ES |
dc.subject | Feuerwiderstand | es_ES |
dc.subject | Bemessung im Brandfall | es_ES |
dc.subject | Vereinfachte Bemessungsmethoden | es_ES |
dc.subject.classification | MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.title | Fire design of slim-floor beams | es_ES |
dc.title.alternative | Brandbemessung von Slim-Floor-Trägern | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/stab.201900030 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2015-67492-R/ES/MEJORA DEL COMPORTAMIENTO RESISTENTE FRENTE A ALTAS TEMPERATURAS DE VIGAS MIXTAS "SLIM-FLOOR" CON MATERIALES AVANZADOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Romero, ML.; Albero Gabarda, V.; Espinós Capilla, A.; Hospitaler Pérez, A. (2019). Fire design of slim-floor beams. Stahlbau. 7(88):665-674. https://doi.org/10.1002/stab.201900030 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/stab.201900030 | es_ES |
dc.description.upvformatpinicio | 665 | es_ES |
dc.description.upvformatpfin | 674 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 88 | es_ES |
dc.relation.pasarela | S\391411 | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |
dc.description.references | Thor J.(1991)Fire resistant steel beam coacting with concrete. European Patent Specification. Publication number 0292449B1. 03.07.91 Bulletin 91/27.European Patent Office.Paris France. | es_ES |
dc.description.references | Peikko Group Global DELTABEAM® Slim‐floor Structure for open spaces [online].https://www.peikko.com/products/deltabeam‐slim‐floor‐structures/overview/ | es_ES |
dc.description.references | Newman, G. M. (1995). Fire resistance of slim floor beams. Journal of Constructional Steel Research, 33(1-2), 87-100. doi:10.1016/0143-974x(94)00016-b | es_ES |
dc.description.references | Constructalia. ArcelorMittal Europe Construction. CoSFB:Composite slim‐floor beams [online].https://constructalia.arcelormittal.com/en/products/cosfb | es_ES |
dc.description.references | Fellinger J.H.H.;Twilt T.(1996)Fire resistance of slim‐floor beams. In: Proceedings of the 2nd ASCE Conference.Irsee Germany. | es_ES |
dc.description.references | Ma, Z., & Mäkeläinen, P. (2000). Behavior of Composite Slim Floor Structures in Fire. Journal of Structural Engineering, 126(7), 830-837. doi:10.1061/(asce)0733-9445(2000)126:7(830) | es_ES |
dc.description.references | Albero, V., Espinós, A., Serra, E., Romero, M. L., & Hospitaler, A. (2019). Numerical study on the flexural behaviour of slim-floor beams with hollow core slabs at elevated temperature. Engineering Structures, 180, 561-573. doi:10.1016/j.engstruct.2018.11.061 | es_ES |
dc.description.references | Albero, V., Espinós, A., Serra, E., Romero, M. L., & Hospitaler, A. (2018). Experimental study on the thermal behaviour of fire exposed slim-floor beams. Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018. doi:10.4995/asccs2018.2018.8288 | es_ES |
dc.description.references | EN 1991‐1‐2 Eurocode 1 (2002) Actions on structures. Part 1‐2. General actions – actions on structures exposed to fire.Brussels Belgium:Comité Européen de Normalisation. | es_ES |
dc.description.references | EN 1994‐1‐2 Eurocode 4 (2005) Design of composite steel and concrete structures. Part 1‐2: General rules – Structural fire design.Brussels Belgium:Comité Européen de Normalisation. | es_ES |
dc.description.references | Romero, M. L., Cajot, L.-G., Conan, Y., & Braun, M. (2015). Fire design methods for slim-floor structures. Steel Construction, 8(2), 102-109. doi:10.1002/stco.201510012 | es_ES |
dc.description.references | Zaharia, R., & Franssen, J. M. (2012). Simple equations for the calculation of the temperature within the cross-section of slim floor beams under ISO Fire. Steel & Composite structures, 13(2), 171-185. doi:10.12989/scs.2012.13.2.171 | es_ES |
dc.description.references | Hanus, F., Zaganelli, D., Cajot, L.-G., & Braun, M. (2017). 10.01: Analytical methods for the prediction of fire resistance of «reinforced» slim floor beams. ce/papers, 1(2-3), 2508-2517. doi:10.1002/cepa.299 | es_ES |
dc.description.references | EN 1992‐1‐2 Eurocode 2 (2004) Design of concrete structures. Part 1‐2: General rules – Structural fire design.Brussels Belgium:Comité Européen de Normalisation. | es_ES |
dc.description.references | Ellobody, E. (2011). Nonlinear behaviour of unprotected composite slim floor steel beams exposed to different fire conditions. Thin-Walled Structures, 49(6), 762-771. doi:10.1016/j.tws.2011.02.002 | es_ES |
dc.description.references | EN 1994‐1‐1 Eurocode 4 (2004) Design of composite steel and concrete structures. Part 1‐1: General rules and rules for buildings.Brussels Belgium:Comité Européen de Normalisation. | es_ES |
dc.description.references | Espinos, A., Romero, M. L., & Hospitaler, A. (2010). Advanced model for predicting the fire response of concrete filled tubular columns. Journal of Constructional Steel Research, 66(8-9), 1030-1046. doi:10.1016/j.jcsr.2010.03.002 | es_ES |
dc.description.references | Espinós, A., Albero, V., Romero, M. L., Hospitaler, A., & Ibáñez, C. (2017). 10.08: Application of advanced materials for enhancing the fire performance of slim-floors. ce/papers, 1(2-3), 2572-2581. doi:10.1002/cepa.306 | es_ES |
dc.description.references | Gardner, L., Insausti, A., Ng, K. T., & Ashraf, M. (2010). Elevated temperature material properties of stainless steel alloys. Journal of Constructional Steel Research, 66(5), 634-647. doi:10.1016/j.jcsr.2009.12.016 | es_ES |
dc.description.references | Renaud C.(2007)European Project RFS‐04048 “Stainless Steel in Fire”. Work Package 2: Composite members in fire. Final report.Centre Technique Industriel de la Construction Métallique. | es_ES |
dc.description.references | Ellobody, E. (2012). Composite slim floor stainless steel beam construction exposed to different fires. Engineering Structures, 36, 1-13. doi:10.1016/j.engstruct.2011.11.029 | es_ES |