- -

Influence of geometrical parameters on the linear stability of a Benard-Marangoni problem

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Influence of geometrical parameters on the linear stability of a Benard-Marangoni problem

Show full item record

Hoyas, S.; Fajardo, P.; Pérez Quiles, MJ. (2016). Influence of geometrical parameters on the linear stability of a Benard-Marangoni problem. Physical Review E. 93(4). https://doi.org/10.1103/PhysRevE.93.043105

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/138015

Files in this item

Item Metadata

Title: Influence of geometrical parameters on the linear stability of a Benard-Marangoni problem
Author: Hoyas, S Fajardo, Pablo Pérez Quiles, María Jezabel
UPV Unit: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] A linear stability analysis of a thin liquid film flowing over a plate is performed. The analysis is performed in an annular domain when momentum diffusivity and thermal diffusivity are comparable (relatively low ...[+]
Copyrigths: Reserva de todos los derechos
Source:
Physical Review E. (issn: 2470-0045 )
DOI: 10.1103/PhysRevE.93.043105
Publisher:
American Physical Society
Publisher version: https://doi.org/10.1103/PhysRevE.93.043105
Thanks:
The computations shown in this work were made possible by a generous grant of computer time from the supercomputation center of the Universitat Politecnica de Valencia.
Type: Artículo

References

Bénard, H. (1901). Les tourbillons cellulaires dans une nappe liquide. - Méthodes optiques d’observation et d’enregistrement. Journal de Physique Théorique et Appliquée, 10(1), 254-266. doi:10.1051/jphystap:0190100100025400

Smith, M. K., & Davis, S. H. (1983). Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities. Journal of Fluid Mechanics, 132, 119-144. doi:10.1017/s0022112083001512

Garnier, N., & Chiffaudel, A. (2001). Two dimensional hydrothermal waves in an extended cylindrical vessel. The European Physical Journal B, 19(1), 87-95. doi:10.1007/s100510170352 [+]
Bénard, H. (1901). Les tourbillons cellulaires dans une nappe liquide. - Méthodes optiques d’observation et d’enregistrement. Journal de Physique Théorique et Appliquée, 10(1), 254-266. doi:10.1051/jphystap:0190100100025400

Smith, M. K., & Davis, S. H. (1983). Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities. Journal of Fluid Mechanics, 132, 119-144. doi:10.1017/s0022112083001512

Garnier, N., & Chiffaudel, A. (2001). Two dimensional hydrothermal waves in an extended cylindrical vessel. The European Physical Journal B, 19(1), 87-95. doi:10.1007/s100510170352

Hoyas, S., Herrero, H., & Mancho, A. M. (2002). Bifurcation diversity of dynamic thermocapillary liquid layers. Physical Review E, 66(5). doi:10.1103/physreve.66.057301

Hoyas, S., Herrero, H., & Mancho, A. M. (2002). Thermal convection in a cylindrical annulus heated laterally. Journal of Physics A: Mathematical and General, 35(18), 4067-4083. doi:10.1088/0305-4470/35/18/306

Hoyas, S., Mancho, A. M., Herrero, H., Garnier, N., & Chiffaudel, A. (2005). Bénard–Marangoni convection in a differentially heated cylindrical cavity. Physics of Fluids, 17(5), 054104. doi:10.1063/1.1876892

Herrero, H., & Mancho, A. M. (1998). Influence of aspect ratio in convection due to nonuniform heating. Physical Review E, 57(6), 7336-7339. doi:10.1103/physreve.57.7336

Mancho, A., Herrero, H., & Burguete, J. (1997). Primary instabilities in convective cells due to nonuniform heating. Physical Review E, 56(3), 2916-2923. doi:10.1103/physreve.56.2916

Ezersky, A. B., Garcimartín, A., Burguete, J., Mancini, H. L., & Pérez-García, C. (1993). Hydrothermal waves in Marangoni convection in a cylindrical container. Physical Review E, 47(2), 1126-1131. doi:10.1103/physreve.47.1126

Hoyas, S., Gil, A., Fajardo, P., & Pérez-Quiles, M. J. (2013). Codimension-three bifurcations in a Bénard-Marangoni problem. Physical Review E, 88(1). doi:10.1103/physreve.88.015001

Peng, L., Li, Y.-R., Shi, W.-Y., & Imaishi, N. (2007). Three-dimensional thermocapillary–buoyancy flow of silicone oil in a differentially heated annular pool. International Journal of Heat and Mass Transfer, 50(5-6), 872-880. doi:10.1016/j.ijheatmasstransfer.2006.08.015

Shi, W., Liu, X., Li, G., Li, Y.-R., Peng, L., Ermakov, M. K., & Imaishi, N. (2010). Thermocapillary Convection Instability in Shallow Annular Pools by Linear Stability Analysis. Journal of Superconductivity and Novel Magnetism, 23(6), 1185-1188. doi:10.1007/s10948-010-0661-8

Torregrosa, A. J., Hoyas, S., Pérez-Quiles, M. J., & Mompó-Laborda, J. M. (2013). Bifurcation Diversity in an Annular Pool Heated from Below: Prandtl and Biot Numbers Effects. Communications in Computational Physics, 13(2), 428-441. doi:10.4208/cicp.090611.170212a

Eckert, E. R. G., Goldstein, R. J., Ibele, W. E., Patankar, S. V., Simon, T. W., Kuehn, T. H., … Garrick, S. (2000). Heat transfer — a review of 1997 literature. International Journal of Heat and Mass Transfer, 43(14), 2431-2528. doi:10.1016/s0017-9310(99)00196-9

Hoyas, S., Fajardo, P., Gil, A., & Perez-Quiles, M. J. (2014). Analysis of bifurcations in a Bénard–Marangoni problem: Gravitational effects. International Journal of Heat and Mass Transfer, 73, 33-41. doi:10.1016/j.ijheatmasstransfer.2014.01.061

O’Shaughnessy, S. M., & Robinson, A. J. (2013). Heat transfer near an isolated hemispherical gas bubble: The combined influence of thermocapillarity and buoyancy. International Journal of Heat and Mass Transfer, 62, 422-434. doi:10.1016/j.ijheatmasstransfer.2013.02.064

Celli, M., Barletta, A., & Alves, L. S. de B. (2015). Marangoni instability of a liquid film flow with viscous dissipation. Physical Review E, 91(2). doi:10.1103/physreve.91.023006

Orszag, S. A. (1972). Comparison of Pseudospectral and Spectral Approximation. Studies in Applied Mathematics, 51(3), 253-259. doi:10.1002/sapm1972513253

Canuto, C., Hussaini, M. Y., Quarteroni, A., & Zang, T. A. (1988). Spectral Methods in Fluid Dynamics. doi:10.1007/978-3-642-84108-8

JIMÉNEZ, J., & HOYAS, S. (2008). Turbulent fluctuations above the buffer layer of wall-bounded flows. Journal of Fluid Mechanics, 611, 215-236. doi:10.1017/s0022112008002747

Mancho, A. M., & Herrero, H. (2000). Instabilities in a laterally heated liquid layer. Physics of Fluids, 12(5), 1044-1051. doi:10.1063/1.870359

Favre, E., Blumenfeld, L., & Daviaud, F. (1997). Instabilities of a liquid layer locally heated on its free surface. Physics of Fluids, 9(5), 1473-1475. doi:10.1063/1.869470

Burguete, J., Mukolobwiez, N., Daviaud, F., Garnier, N., & Chiffaudel, A. (2001). Buoyant-thermocapillary instabilities in extended liquid layers subjected to a horizontal temperature gradient. Physics of Fluids, 13(10), 2773-2787. doi:10.1063/1.1398536

Daviaud, F., & Vince, J. M. (1993). Traveling waves in a fluid layer subjected to a horizontal temperature gradient. Physical Review E, 48(6), 4432-4436. doi:10.1103/physreve.48.4432

RILEY, R. J., & NEITZEL, G. P. (1998). Instability of thermocapillary–buoyancy convection in shallow layers. Part 1. Characterization of steady and oscillatory instabilities. Journal of Fluid Mechanics, 359, 143-164. doi:10.1017/s0022112097008343

Mercier, J. F., & Normand, C. (1996). Buoyant‐thermocapillary instabilities of differentially heated liquid layers. Physics of Fluids, 8(6), 1433-1445. doi:10.1063/1.868920

Yu, J.-J., Ruan, D.-F., Li, Y.-R., & Chen, J.-C. (2015). Experimental study on thermocapillary convection of binary mixture in a shallow annular pool with radial temperature gradient. Experimental Thermal and Fluid Science, 61, 79-86. doi:10.1016/j.expthermflusci.2014.10.015

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record