Akhmedov, A.M., Başar, F.: On the fine spectrum of the Cesàro operator in $$c_0$$ c 0 . Math. J. Ibaraki Univ. 36, 25–32 (2004)
Akhmedov, A.M., Başar, F.: The fine spectrum of the Cesàro operator $$C_1$$ C 1 over the sequence space $$bv_p, (1 \le p < \infty ) $$ b v p , ( 1 ≤ p < ∞ ) . Math. J. Okayama Univ. 50, 135–147 (2008)
Albanese, A.A., Bonet, J., Ricker, W.J.: Convergence of arithmetic means of operators in Fréchet spaces. J. Math. Anal. Appl. 401, 160–173 (2013)
[+]
Akhmedov, A.M., Başar, F.: On the fine spectrum of the Cesàro operator in $$c_0$$ c 0 . Math. J. Ibaraki Univ. 36, 25–32 (2004)
Akhmedov, A.M., Başar, F.: The fine spectrum of the Cesàro operator $$C_1$$ C 1 over the sequence space $$bv_p, (1 \le p < \infty ) $$ b v p , ( 1 ≤ p < ∞ ) . Math. J. Okayama Univ. 50, 135–147 (2008)
Albanese, A.A., Bonet, J., Ricker, W.J.: Convergence of arithmetic means of operators in Fréchet spaces. J. Math. Anal. Appl. 401, 160–173 (2013)
Albanese, A.A., Bonet, J., Ricker, W.J.: Spectrum and compactness of the Cesàro operator on weighted $$\ell _p$$ ℓ p spaces. J. Aust. Math. Soc. 99, 287–314 (2015)
Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in the Fréchet spaces $$\ell ^{p+}$$ ℓ p + and $$L ^{p-}$$ L p - . Glasg. Math. J (to appear)
Ansari, S.I., Bourdon, P.S.: Some properties of cyclic operators. Acta Sci. Math. Szeged 63, 195–207 (1997)
Brown, A., Halmos, P.R., Shields, A.L.: Cesàro operators. Acta Sci. Math. Szeged 26, 125–137 (1965)
Curbera, G.P., Ricker, W.J.: Spectrum of the Cesàro operator in $$\ell ^p$$ ℓ p . Arch. Math. 100, 267–271 (2013)
Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on $$\ell ^p$$ ℓ p and $$c_0$$ c 0 . Integr. Equ. Oper. Theory 80, 61–77 (2014)
Curbera, G.P., Ricker, W.J.: The Cesàro operator and unconditional Taylor series in Hardy spaces. Integr. Equ. Oper. Theory 83, 179–195 (2015)
Diestel, J.: Sequences and Series in Banach Spaces. Springer, New York (1984)
Dowson, H.R.: Spectral Theory of Linear Operators. Academic Press, London (1978)
Dunford, N., Schwartz, J.T.: Linear Operators I: General Theory, 2nd Printing. Wiley Interscience Publ, New York (1964)
Emilion, R.: Mean-bounded operators and mean ergodic theorems. J. Funct. Anal. 61, 1–14 (1985)
Goldberg, S.: Unbounded Linear Operators: Theory and Applications. Dover Publ, New York (1985)
Hille, E.: Remarks on ergodic theorems. Trans. Am. Math. Soc. 57, 246–269 (1945)
Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981)
Krengel, U.: Ergodic Theorems. de Gruyter, Berlin (1985)
Leibowitz, G.: Spectra of discrete Cesàro operators. Tamkang J. Math. 3, 123–132 (1972)
Lin, M.: On the uniform ergodic theorem. Proc. Am. Math. Soc. 43, 337–340 (1974)
Megginson, R.E.: An Introduction to Banach Space Theory. Springer, New York (1998)
Mureşan, M.: A Concrete Approach to Classical Analysis. Springer, Berlin (2008)
Okutoyi, J.I.: On the spectrum of $$C_1$$ C 1 as an operator on $$bv_0$$ b v 0 . J. Aust. Math. Soc. Ser. A 48, 79–86 (1990)
Radjavi, H., Tam, P.-W., Tan, K.-K.: Mean ergodicity for compact operators. Studia Math. 158, 207–217 (2003)
Reade, J.B.: On the spectrum of the Cesàro operator. Bull. Lond. Math. Soc. 17, 263–267 (1985)
Rhoades, B.E., Yildirim, M.: The spectra and fine spectra of factorable matrices on $$c_0$$ c 0 . Math. Commun. 16, 265–270 (2011)
Taylor, A.E.: Introduction to Functional Analysis. Wiley, New York (1958)
[-]