- -

Herramientas gráficas de diseño para determinar la pendiente mínima de autolimpieza en tuberías de alcantarillado sanitario de pequeño diámetro

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Herramientas gráficas de diseño para determinar la pendiente mínima de autolimpieza en tuberías de alcantarillado sanitario de pequeño diámetro

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Castro Carrera, F. es_ES
dc.contributor.author La Motta, E.J. es_ES
dc.date.accessioned 2020-03-02T06:48:16Z
dc.date.available 2020-03-02T06:48:16Z
dc.date.issued 2020-01-31
dc.identifier.issn 1134-2196
dc.identifier.uri http://hdl.handle.net/10251/138054
dc.description.abstract [ES] Este artículo presenta herramientas gráficas para diseño de tuberías de alcantarillado sanitario con autolimpieza por tensión de corte, para diámetros entre 100 y 400 mm, usando dos diferentes criterios: primero, considerando la suposición que con el caudal mínimo se desarrollará un esfuerzo cortante igual al generado por la tubería llena a una velocidad de 0.6, 0.7 y 0.8 m/s, y segundo, usando tensiones de corte mínimas de 0.867, 1.4 y 2 N/m2. Estas herramientas consisten en curvas para determinar la pendiente de autolimpieza, la profundidad relativa, el caudal máximo que puede ser transportado con una profundidad relativa de 0.8D, y las velocidades para flujo lleno y parcialmente lleno para un caudal mínimo dado. También se incluyen ecuaciones para determinar tanto un valor aproximado de la pendiente de autolimpieza, como la pendiente exacta. Se consideró un coeficiente de rugosidad de Manning constante de 0.009 s/m1/3, correspondiente a tuberías nuevas de PVC. es_ES
dc.description.abstract [EN] This paper presents graphical tools for the design of sanitary sewers with self-cleansing by shear stress, for diameters between 100 mm and 400 mm, using two different criteria: first, using the assumption that under minimum flow the liquid will develop a shear stress equal to that generated by the sewer when running full at a velocity of 0.6, 0.7 and 0.8 m/s, and second, using self-cleansing shear stress of 0.867, 1.4, and 2 N/m2. These tools consist of curves to determine the self-cleansing slope, the depth-to-diameter ratio, the maximum flow rate that can be transported with a relative depth of 0.8D, and the velocity under part-full and full-pipe conditions for a given minimum flow rate. Also, equations are provided to determine both an approximate value of the self-cleansing slope, as well as the exact slope. A constant Manning’s roughness coefficient of 0.009 s/m1/3 was used, corresponding to new PVC pipes. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Ingeniería del agua es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Self cleansing es_ES
dc.subject Shear stress es_ES
dc.subject Self-cleansing velocity es_ES
dc.subject Design es_ES
dc.subject Sanitary sewer es_ES
dc.subject Autolimpieza es_ES
dc.subject Tensión de corte es_ES
dc.subject Velocidad autolimpiante es_ES
dc.subject Diseño es_ES
dc.subject Alcantarillado sanitario es_ES
dc.title Herramientas gráficas de diseño para determinar la pendiente mínima de autolimpieza en tuberías de alcantarillado sanitario de pequeño diámetro es_ES
dc.title.alternative Graphical design tools to determine the minimum self-cleansing slope in small diameter sanitary sewers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ia.2020.12260
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Castro Carrera, F.; La Motta, E. (2020). Herramientas gráficas de diseño para determinar la pendiente mínima de autolimpieza en tuberías de alcantarillado sanitario de pequeño diámetro. Ingeniería del agua. 24(1):49-63. https://doi.org/10.4995/ia.2020.12260 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ia.2020.12260 es_ES
dc.description.upvformatpinicio 49 es_ES
dc.description.upvformatpfin 63 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1886-4996
dc.relation.pasarela OJS\12260 es_ES
dc.description.references Anta, J., Suárez, J., Jácome, A., Regueiro-Picallo, M., Puertas, J., Naves, J., Recarey, M. (2018). SEDUNIT Project: Study of the accumulation, erosion and sediment transport of cohesive solids in combined sewer systems, WIT Transactions on Ecology and the Environment, 228, 1-8. https://doi.org/10.2495/WP180011 es_ES
dc.description.references Arthur, S., Ashley, R., Tait, S., Nalluri, C. (1999). Sediment Transport in Sewers - A Step Towards the Design of Sewers to Control Sediment Problems. In Proceedings of the Institution of Civil Engineers - Water, Maritime and Energy, 9-19. https://doi.org/10.1680/iwtme.1999.31264 es_ES
dc.description.references ASCE - WEF. (2007). Gravity Sanitary Sewer Design and Construction. ASCE Manuals and Reports on Engineering Practice NO. 60. WEF Manual of Practice No. FD-5. (Segunda). ASCE, Reston, Virginia, USA. es_ES
dc.description.references ASCE - WPCF. (1969). Design and construction of sanitary and storm sewers. Manual Rep. No. 9. es_ES
dc.description.references ASCE - WPCF. (1982). Gravity Sanitary Sewer Design and Construction. ASCE Manuals and Reports on Engineering Practice NO. 60. WPCF Manual of Practice No. FD-5. ASCE, New York, USA. es_ES
dc.description.references Bakalian, A., Wright, A., Otis, R., de Azevedo Netto, J. (1994). Simplified Sewerage: Design Guidelines. Water and Sanitation Report, 7. Washington, DC 20433 USA. es_ES
dc.description.references Banasiak, R., Tait, S. (2008). The reliability of sediment transport predictions in sewers: influence of hydraulic and morphological uncertainties, Water Science & Technology, 57(9), 1317-1327, https://doi.org/10.2166/wst.2008.297 es_ES
dc.description.references Bishop, R. R. (1978). Hydraulic Characteristics of PVC Pipe in Sanitary Sewers (A Report of Field Measurements). Reports. Paper 598. Recuperado de https://digitalcommons.usu.edu/water_rep/598/ es_ES
dc.description.references Bong, C. H. J. (2014). A Review on the Self-Cleansing Design Criteria for Sewer System. Universiti Malaysia Sarawak UNIMAS E-Journal of Civil Engineering, 5(2), 1-7. https://doi.org/10.33736/jcest.132.2014 es_ES
dc.description.references British Standards Institution. (2017). BS EN 16933-2:2017. Drain and sewer systems outside buildings - Design. Part 2: Hydraulic design. BSI. es_ES
dc.description.references Butler, D., Davies, J. W. (2011). Urban Drainage. 3rd Ed. Taylor & Francis, Ed. Oxon. es_ES
dc.description.references Butler, D., Digman, C., Makropoulos, C., Davies, J. W. (2018). Urban Drainage, 4th Ed. Boca Raton, EUA: CRC Press, Taylor and Francis Group. es_ES
dc.description.references Butler, D., May, R., Ackers, J. (1996a). Sediment Transport in Sewers, Part 2: Design. In Proceedings of the Institution of Civil Engineers - Water, Maritime and Energy. https://doi.org/10.1680/iwtme.1996.28432 es_ES
dc.description.references Butler, D., May, R., Ackers, J. (2003). Self-Cleansing Sewer Design Based on Sediment Transport Principles. Journal of Hydraulic Engineering, 129(4), 276-282. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:4(276) es_ES
dc.description.references Butler, D., May, R. W. P., Ackers, J. C. (1996b). Sediment transport in sewers, Part 1: Background. Proceedings of the Institution of Civil Engineers - Water, Maritime and Energy, 118(2), 103-112. https://doi.org/10.1680/iwtme.1996.28431 es_ES
dc.description.references Camp, T. R. (1946). Sewage Works. Sewage Works Journal, 18(1), 3-16. es_ES
dc.description.references Ebtehaj, I., Bonakdari, H., Sharifi, A. (2014). Design criteria for sediment transport in sewers based on self-cleansing concept. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(11), 914-924, https://doi.org/10.1631/jzus.A1300135 es_ES
dc.description.references Enfinger, K., Mitchell, P. (2010). Scattergraph Principles and Practice: Evaluating Self-Cleansing in Existing Sewers Using the Tractive Force Method. ADS Environmental Services. https://doi.org/10.1061/41114(371)453 es_ES
dc.description.references Fair, G. M., Geyer, J. C., Okun, D. A. (1966). Water and Wastewater Engineering. Volume 1 Water Supply and Wastewater Removal. New York, USA: I. John Wiley and Sons, Ed. es_ES
dc.description.references Ghani, A. (1993). Sediment Transport in Sewers. PhD Thesis. University of Newcastle Upon Tyne. England. Recuperado de https://www.researchgate.net/publication/271452785_Sediment_transport_in_Sewers es_ES
dc.description.references GLUMRB. (2014). Recommended Standards for Wastewater Facilities, A Report of the Wastewater Committee of the Great Lakes - Upper Mississippi River, Board of State and Provincial Public Health and Environmental Managers. Albany, N.Y., USA. es_ES
dc.description.references Guzmán, K., La Motta, E. J., McCorquodale, J. A., Rojas, S., Ermogenous, M. (2007). Effect of Biofilm Formation on Roughness Coefficient and Solids Deposition in Small-Diameter PVC Sewer Pipes. Journal of Environmental Engineering, ASCE, 133(4), 364-371. https://doi.org/10.1061/(ASCE)0733-9372(2007)133:4(364) es_ES
dc.description.references Haestad Methods, Walski, T. M., Barnard, T. E., Harold, E., Merritt, L. B., Walker, N., Whitman, B. E. (2004). Wastewater collection system modeling and design. Waterbury, CT, USA: Haestad Press. es_ES
dc.description.references Hager, W. H. (2010). Wastewater Hydraulics. Theory and Practice, 2nd Ed. Springer. https://doi.org/10.1007/978-3-642-11383-3 es_ES
dc.description.references Houghtalen, R. J., Akan, A. O., Hwang, N. H. C. (2017). Fundamentals of Hydraulic Engineering Systems. 5th Ed. Pearson. es_ES
dc.description.references Mara, D., Sleight, A., Tayler, K. (2001). PC-based Simplified Sewer Design 1st Ed. School of Civil Engineering, University of Leeds, LEEDS LS2 9JT, England. Recuperado de https://assets.publishing.service.gov.uk/media/57a08d4ee5274a31e00017aa/R7535-simplified_sewerage_manual_full.pdf es_ES
dc.description.references Melo, J. C. (2005). The Experience of Condominial Water and Sewerage Systems in Brazil: Case Studies from Brasilia, Salvador and Parauapebas. Lima, Perú. es_ES
dc.description.references Merritt, L. B. (2009). Tractive Force Design for Sanitary Sewer Self-Cleansing. Journal Of Environmental Engineering, ASCE, 135(12). https://doi.org/10.1061/(ASCE)EE.1943-7870.0000105 es_ES
dc.description.references Metcalf y Eddy, I. (1981). Wastewater Engineering: Collection and Pumping of Wastewater. (G. Tchobanoglous, Ed.). USA: McGraw-Hill. es_ES
dc.description.references Ministerio de Vivienda Ciudad y Territorio. (2012). Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico - RAS, Título D Sistemas de Recolección y Evacuación de Aguas Residuales Domésticas y Aguas Lluvias. 2ª Ed. Bogotá, Colombia. es_ES
dc.description.references Nalluri, C., Ghani, A. (1996). Design options for self-cleansing storm sewers. Water Science and Technology, 33(9), 215-220. https://doi.org/10.2166/wst.1996.0214 es_ES
dc.description.references PVC Pipe Association. (2012). Handbook of PVC Pipe Design and Construction, 5th Ed. Industrial Press, Inc. es_ES
dc.description.references Seco I., Gómez-Valentín M., Schellart A. y Tait S. (2014). Erosion resistance and behaviour of highly organic in-sewer sediment, Water Science and Techonology, 69(3), 672-679. https://doi.org/10.2166/wst.2013.761 es_ES
dc.description.references Shammas, N., Wang, L. K. (2011). Water and wastewater engineering: water supply and wastewater removal, 3rd Ed. USA: John Wiley and Sons Inc. es_ES
dc.description.references Sturm, T. W. (2001). Open Channel Hydraulics. Boston, EUA: McGraw Hill, Ed. https://doi.org/10.1115/1.1421122 es_ES
dc.description.references Trapote-Jaume, A. (2013). Infraestructuras Hidráulico-Sanitarias II. Saneamiento y drenaje urbano. 2ª Ed. Universidad de Alicante. es_ES
dc.description.references Vongvisessomjai, N., Tingsanchali, T., Babel M. (2010). Non-deposition design criteria for sewers with part-full flow, Urban Water Journal, 7(1), 61-77. https://doi.org/10.1080/15730620903242824 es_ES
dc.description.references Yao, K. M. (1974). Sewer line design based on critical shear stress. Journal of the Environmental Engineering Division, 100(2), 507-520. es_ES
dc.description.references Yao, K. M. (1976). Functional Design of Sanitary Sewers. Water Pollution Control Federation, 48(7), 1772-1778. Recuperado de http://www.jstor.org/stable/25039066?seq=1#references_tab_contents. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem