Mostrar el registro sencillo del ítem
dc.contributor.author | Romero, G. | es_ES |
dc.contributor.author | Coronado-Hernández, O.E. | es_ES |
dc.contributor.author | Fuertes-Miquel, V.S. | es_ES |
dc.contributor.author | Ponz-Carcelén, R. | es_ES |
dc.coverage.spatial | east=-0.3336614; north=39.569999; name=Massamagrell, Valencia, Espanya | es_ES |
dc.date.accessioned | 2020-03-02T07:07:54Z | |
dc.date.available | 2020-03-02T07:07:54Z | |
dc.date.issued | 2020-01-31 | |
dc.identifier.issn | 1134-2196 | |
dc.identifier.uri | http://hdl.handle.net/10251/138057 | |
dc.description.abstract | [ES] Debido a las bolsas de aire que hay en el interior de las tuberías durante los procesos de llenado y vaciado, se producen depresiones o sobrepresiones en el interior de las mismas, capaces de producir serios daños en las instalaciones. Para analizar todas las variables hidráulicas en las maniobras de llenado y vaciado, se opta por la aplicación de un modelo matemático, el cual es capaz de simular con exactitud el comportamiento de ambos fluidos, tanto la columna de agua como la bolsa de aire. El modelo propuesto por los autores ya ha sido validado en pequeñas instalaciones de laboratorio. En este trabajo, se pretende validar el modelo matemático en una instalación real de grandes dimensiones. Concretamente, se trata de una conducción de diámetro DN400, ubicada en Massamagrell (Valencia), donde se analizan las maniobras de llenado y de vaciado. Finalmente, se comparan los resultados que proporciona el modelo con las mediciones realizadas por la Empresa Mixta Metropolitana S.A. (EMIMET), | es_ES |
dc.description.abstract | [EN] Air pockets inside hydraulic installations during filling and emptying processes can generate pressure surges and negative pressure, respectively. Serious damages can be occurred in pipelines. In order to analyse hydraulic variables in filling and emptying operations, the selection of a mathematical model is chosen, which is suitable of simulating accurately the behaviour of both fluids (water and air) in pressurized water systems. The mathematical model proposed by the authors has been validated in small laboratory facilities. The aim of this work is to validate the mathematical model in current pipeline installations with large both nominal diameter and length. The pipeline is a nominal diameter DN400, and is located in Massamagrell, Valencia, Spain. The filling and emptying manoeuvres in the selected pipeline are performed by the Empresa Mixta Metropolitana S.A. (EMIMET). A good agreement is obtained when a comparison of absolute pressure and water flow is carried out between the ma | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Ingeniería del agua | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Emptying of pipes | es_ES |
dc.subject | Filling of pipes | es_ES |
dc.subject | Air valves | es_ES |
dc.subject | Actual facilities | es_ES |
dc.subject | Hydraulic transients | es_ES |
dc.subject | Vaciado de tuberías | es_ES |
dc.subject | Llenado de tuberías | es_ES |
dc.subject | Válvulas de aire | es_ES |
dc.subject | Instalaciones reales | es_ES |
dc.subject | Transitorios hidráulicos | es_ES |
dc.title | Maniobras de llenado y vaciado en grandes conducciones. Aplicación a una tubería de fundición DN400 en Massamagrell (Valencia, España) | es_ES |
dc.title.alternative | Filling and emptying manoeuvres in large pipes. Application to a cast iron pipeline DN400 located in Massamagrell, Valencia, Spain | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/ia.2020.12184 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Romero, G.; Coronado-Hernández, O.; Fuertes-Miquel, V.; Ponz-Carcelén, R. (2020). Maniobras de llenado y vaciado en grandes conducciones. Aplicación a una tubería de fundición DN400 en Massamagrell (Valencia, España). Ingeniería del agua. 24(1):15-29. https://doi.org/10.4995/ia.2020.12184 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ia.2020.12184 | es_ES |
dc.description.upvformatpinicio | 15 | es_ES |
dc.description.upvformatpfin | 29 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1886-4996 | |
dc.relation.pasarela | OJS\12184 | es_ES |
dc.description.references | AWWA American Water Works Association 2001. Manual of Water Supply Practices M51: Air-Release, Air-Vacuum, and Combination Air Valves, American Water Works Association, Denver, CO, USA. | es_ES |
dc.description.references | Apollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., Piccinni, A.F. 2016. Hydraulic transients caused by air expulsion during rapid filling of undulating pipelines. Water, 8(1), 25, https://doi.org/10.3390/w8010025 | es_ES |
dc.description.references | Balacco, G., Apollonio, C., Piccinni, A.F. 2015. Experimental analysis of air valve behaviour during hydraulic transients. Journal of Applied Water Engineering Research, 3(1), 3-11, https://doi.org/10.1080/23249676.2015.1032374 | es_ES |
dc.description.references | Besharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M. 2018. Backflow air and pressure analysis in emptying pipeline containing entrapped air pocket. Urban Water Journal, 15(8), 769-779, https://doi.org/10.1080/1573062X.2018.1540711 | es_ES |
dc.description.references | Besharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T, Ramos, H.M. 2019. Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage. Journal of Hydraulic Research. https://doi.org/10.1080/00221686.2019.1625819 | es_ES |
dc.description.references | Chaudhry, M.H. 1989. Application of lumped and distributed approaches for hydraulic transient analysis. Proceedings of the International Congress on Cases and Accidents in Fluid Systems, ANAIS, Polytechnic University of Sao Paulo, Brasil. | es_ES |
dc.description.references | Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M. 2017. Experimental and numerical analysis of a water emptying pipeline using different air valves, Water, 9(2), 98, https://doi.org/10.3390/w9020098 | es_ES |
dc.description.references | Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M, Ramos, H.M. 2018a. Subatmospheric pressure in a water draining pipeline with an air pocket. Urban Water Journal, 15(4), pp. 346-352, https://doi.org/10.1080/1573062X.2018.1475578 | es_ES |
dc.description.references | Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Iglesias-Rey, P.L., Martínez-Solano, F.J. 2018b. Rigid water column model for simulating the emptying process in a pipeline using pressurized air. Journal of Hydraulic Engineering, 144(4), https://doi.org/10.1061/(ASCE)HY.1943-7900.0001446 | es_ES |
dc.description.references | Coronado-Hernández, O.E., Besharat, M., Fuertes-Miquel, V.S., Ramos, H.M. 2019. Effect of a commercial air valve on rapid filling of a single pipeline: numerical and experimental analysis. Water, 11(9), 1814, https://doi.org/10.3390/w11091814 | es_ES |
dc.description.references | Fuertes-Miquel, V.S. 2001, Hydraulic transients with entrapped air pockets, PhD Thesis, Department of Hydraulic Engineering, Polytechnic University of Valencia, Editorial Universitat Politècnica de València. | es_ES |
dc.description.references | Fuertes-Miquel, V.S., López-Jiménez, P.A., Martínez-Solano, F.J., López-Patiño, G. 2016. Numerical modelling of pipelines with air pockets and air valves. Canadian Journal of Civil Engineering, 43(12), 1052-1061, https://doi.org/10.1139/cjce-2016-0209 | es_ES |
dc.description.references | Fuertes-Miquel, V.S., Coronado-Hernández, O.E., Iglesias-Rey, P.L., Mora-Meliá, D. 2019a. Transient phenomena during the emptying process of a single pipe with water-air interaction. Journal of Hydraulic Research, 57(3), 318-326, https://doi.org/10.1080/00221686.2018.1492465 | es_ES |
dc.description.references | Fuertes-Miquel, V.S., Coronado-Hernández, O.E., Mora-Meliá, D., Iglesias-Rey, P.L. 2019b. Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review. Urban Water Journal, 16(4), pp. 299-311, https://doi.org/10.1080/1573062X.2019.1669188 | es_ES |
dc.description.references | Hope, P., Papworth, M.U. 1980. Fire main failures due to rapid priming of dry lines. Proceedings of the 3rd International Conference on Pressure Surges, BHRA, Canterbury, Inglaterra, pp. 381-390. | es_ES |
dc.description.references | Izquierdo, J., Fuertes, V.S., Cabrera, E., Iglesias, P.L., García-Serra, J. 1999. Pipeline startup with entrapped air. Journal of Hydraulic Research, 37(5), 579-590. https://doi.org/10.1080/00221689909498518 | es_ES |
dc.description.references | Jönsson, L. 1985. Maximun transient pressures in a conduit with check valve and air entrainment. Proceedings of the International Conference on Hydraulics of Pumping Stations, Manchester, Inglaterra, pp. 55-76. | es_ES |
dc.description.references | Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučkovič, S., Hou, Q., Tijsseling, A.S., Anderson, A, van't Westende, J.M.C. 2012. Emptying of large-scale pipeline by pressurized air. Journal of Hydraulic Engineering, 138(12), 1090-1100. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000631 | es_ES |
dc.description.references | León, A., Ghidaoui, M., Schmidt, A., García, M. 2010. A robust two-equation model for transient-mixed flows. Journal of Hydraulic Research, 48(1), 44-56, https://doi.org/10.1080/00221680903565911 | es_ES |
dc.description.references | Liou, C., Hunt, W.A. 1996. Filling of pipelines with undulating elevation profiles. Journal of Hydraulic Engineering, 122(10), 534-539, https://doi.org/10.1061/(ASCE)07339429(1996)122:10(534) | es_ES |
dc.description.references | Malekpour, A., Karney, B.W., Nault, J. 2015. Physical understanding of sudden pressurization of pipe systems with entrapped air: energy auditing approach. Journal of Hydraulic Engineering, 142(2). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001067 | es_ES |
dc.description.references | Martins, S.C., Ramos, H.M., Almeida, A.B. 2015. Conceptual analogy for modelling entrapped air action in hydraulic systems. Journal of Hydraulic Research, 53(5), 678-686. https://doi.org/10.1080/00221686.2015.1077353 | es_ES |
dc.description.references | Ramezani, L., Karney, B., Malekpour, A. 2016. The challenge of air valves: a selective critical literature review. Journal of Water Resources Planning and Management, 141(10). https://doi.org/10.1061/(ASCE)WR.1943-5452.0000530 | es_ES |
dc.description.references | Tijsseling, A.S., Hou, Q., Bozkus, Z, Laanearu, J. 2016. Improved one-dimensional models for rapid emptying and filling of pipelines. Journal of Pressure Vessel Technology. 138(3), 031301. https://doi.org/10.1115/1.4031508 | es_ES |
dc.description.references | Trindade, B.C., Vasconcelos, J.G. 2013. Modeling of water pipeline filling events accounting for air phase interactions. Journal of Hydraulic Engineering, 139(9). https://doi.org/10.1061/(ASCE)HY.1943-7900.0000757 | es_ES |
dc.description.references | Vasconcelos, J.G., Wright, S.J. 2008. Rapid flow startup in filled horizontal pipelines. Journal of Hydraulic Engineering, 134(7), 984-992. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:7(984) | es_ES |
dc.description.references | Wylie, E., Streeter, V. 1993. Fluid transients in systems. Ed. Prentice Hall, Englewood Cliffs, New Jersey, USA. | es_ES |