- -

Turbidez y profundidad de disco de Secchi con Sentinel-2 en embalses con diferente estado trófico en la Comunidad Valenciana

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Turbidez y profundidad de disco de Secchi con Sentinel-2 en embalses con diferente estado trófico en la Comunidad Valenciana

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Delegido, Jesús es_ES
dc.contributor.author Urrego, P. es_ES
dc.contributor.author Vicente, E. es_ES
dc.contributor.author Sòria-Perpinyà, X. es_ES
dc.contributor.author Soria, J.M. es_ES
dc.contributor.author Pereira-Sandoval, M. es_ES
dc.contributor.author Ruiz-Verdú, A. es_ES
dc.contributor.author Peña, R. es_ES
dc.contributor.author Moreno, J. es_ES
dc.coverage.spatial east=-0.7532809; north=39.4840108; name=Comunitat València, Espanya es_ES
dc.date.accessioned 2020-03-06T10:38:24Z
dc.date.available 2020-03-06T10:38:24Z
dc.date.issued 2019-12-23
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/138445
dc.description.abstract [ES] En los estudios de calidad de aguas por teledetección, uno de los principales indicadores es la transparencia o turbidez del agua. La transparencia puede ser medida in situ mediante la profundidad del disco de Secchi (SD), y la turbidez con un turbidímetro. En las últimas décadas se han utilizado diferentes relaciones entre bandas de diferentes sensores obtenidas por teledetección para la estimación de estos parámetros. En este trabajo, a partir de datos de campo obtenidos a lo largo de 2017 y 2018 en embalses de la cuenca del Júcar con gran variedad de estados tróficos, se han calibrado diferentes índices y bandas para poder estimar la transparencia a partir de imágenes Sentinel-2 (S2). A las imágenes S2 nivel L1C tomadas en el mismo día que los datos de campo, se les han aplicado tres métodos de corrección atmosférica desarrollados para aguas: Polymer, C2RCC y C2X. A partir de los espectros de S2 obtenidos y de los datos de campo de SD se ha observado que el menor error se obtiene con las imágenes corregidas con Polymer y un ajuste potencial del cociente de reflectividades en las bandas azul y verde (R490/R560), que permiten la estimación de SD con un error relativo del 13%. También el método C2X presenta buen ajuste con el mismo cociente de bandas, aunque un error mayor, presentando la corrección C2RCC la peor correlación. Se ha obtenido también la relación entre SD (en m) y turbidez (en NTU), lo que proporciona un método operativo para la estimación de la turbidez con S2. Se muestra, además, la relación para los diferentes embalses entre el SD y la concentración de clorofila-a, sólidos en suspensión y materia orgánica disuelta. es_ES
dc.description.abstract [EN] Transparency or turbidity is one of the main indicators in studies of water quality using remote sensing. Transparency can be measured in situ through the Secchi disc depth (SD), and turbidity using a turbidimeter. In recent decades, different relationships between bands from different remote sensing sensors have been used for the estimation of these variables. In this paper, several indices and spectral bands have been calibrated in order to estimate transparency from Sentinel-2 (S2) images from field data, obtained throughout 2017 and 2018 in Júcar basin reservoirs with a great variety of trophic states. Three atmospheric correction methods developed for waters have been applied to the S2 level L1C images taken at the same day as the field data: Polymer, C2RCC and C2X. From the spectra obtained from S2 and the SD field data, it has been found that the smallest error is obtained with the images atmospherically corrected with Polymer and a potential adjustment of the reflectivities’ ratio of the blue and green bands (R490/R560), which allow the estimation of SD with a relative error of 13%. Also the C2X method presents good adjustment with the same bands ratio, although with a greater error, while the correction C2RCC shows the worst correlation. The relationship between SD (in m) and turbidity (in NTU) has also been obtained, which provides an operational method for estimating turbidity with S2. The relationship for the different reservoirs between SD and chlorophyll-a concentration, suspended solids and dissolved organic matter, is also shown es_ES
dc.description.sponsorship Este trabajo ha sido posible gracias al Proyecto ESAQS del Programa Prometeo para grupos de investigación de excelencia de la Conselleria d’Educació, Investigació, Cultura i Esport (GVPROMETEO2016-132) de la Generalitat Valenciana.
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista de Teledetección es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Sentinel-2 es_ES
dc.subject Eutrophication es_ES
dc.subject Secchi disk es_ES
dc.subject Turbidity es_ES
dc.subject Júcar basin reservoirs es_ES
dc.subject Eutrofización es_ES
dc.subject Disco de Secchi es_ES
dc.subject Turbidez es_ES
dc.subject Embalses cuenca Júcar es_ES
dc.title Turbidez y profundidad de disco de Secchi con Sentinel-2 en embalses con diferente estado trófico en la Comunidad Valenciana es_ES
dc.title.alternative Turbidity and Secchi disc depth with Sentinel-2 in different trophic status reservoirs at the Comunidad Valenciana es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/raet.2019.12603
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F132/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Delegido, J.; Urrego, P.; Vicente, E.; Sòria-Perpinyà, X.; Soria, J.; Pereira-Sandoval, M.; Ruiz-Verdú, A.... (2019). Turbidez y profundidad de disco de Secchi con Sentinel-2 en embalses con diferente estado trófico en la Comunidad Valenciana. Revista de Teledetección. 0(54):15-24. https://doi.org/10.4995/raet.2019.12603 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2019.12603 es_ES
dc.description.upvformatpinicio 15 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 0 es_ES
dc.description.issue 54 es_ES
dc.identifier.eissn 1988-8740
dc.relation.pasarela OJS\12603 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Alikas, K., Kratzer, S. 2017. Improved retrieval of Secchi depth for optically-complex waters using remote sensing data. Ecological indicators, 77, 218- 227. https://doi.org/10.1016/j.ecolind.2017.02.007 es_ES
dc.description.references Ansper, A., Alikas, K. 2019. Retrieval of Chlorophyll-a from Sentinel-2 MSI Data for the European Union Water Framework Directive Reporting Purposes. Remote Sensing, 11, 64. https://doi.org/10.3390/rs11010064 es_ES
dc.description.references APHA, 1992. Standard methods for the examination of water and wastewater. 18th edition. American Public Health Association. Washington D.C., USA. 1105 pp. es_ES
dc.description.references Baughman, C.A., Jones, B.M., Bartz, K.K., Young, D.B., Zimmerman, C.E. 2015. Reconstructing Turbidity in a Glacially Influenced Lake Using the Landsat TM and ETM+ Surface Reflectance Climate Data Record Archive, Lake Clark, Alaska. Remote Sensing, 7, 13692-13710. https://doi.org/10.3390/rs71013692 es_ES
dc.description.references Brockmann, C., Doerffer, R., Peters, M., Kerstin, S., Embacher, S., Ruescas, A. 2016. Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters. In Proceedings of the "ESA Living Planet Symposium 2016", Prague, Czech Republic, 9-13 May 2016. es_ES
dc.description.references Delegido, J., Urrego, P., Ruiz-Verdú, A., PereiraSandoval, M., Vicente, E., Sòria-Perpinyà, X., Soria, J.M., Moreno, J. 2019. Transparencia de diferentes embalses de la cuenca del Júcar con imágenes Sentinel-2. XVIII Congreso de la Asociación Española de Teledetección. Valladolid, 24-27 septiembre 2019. es_ES
dc.description.references Doron, M., Babin, M., Mangin, A., Hembise, O. 2007. Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance. J. Geophys. Res., 112, C06003. https://doi.org/10.1029/2006JC004007 es_ES
dc.description.references Gholizadeh, M.H., Melesse, A.M., Reddi, L. 2016. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors, 16(8), E1298. https://doi.org/10.3390/s16081298 es_ES
dc.description.references Jeffrey, S.T., Humphrey, G.F. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz., 167, 191-194. https://doi.org/10.1016/S0015-3796(17)30778-3 es_ES
dc.description.references Khorram, S., Cheshire, H., Geraci, A.L., Rosa, G.L., 1991. Water quality mapping of Augusta Bay, Italy from Landsat-TM data. Int. J. Remote Sens., 12(4), 803- 808. https://doi.org/10.1080/01431169108929696 es_ES
dc.description.references Koponen, S., Pulliainen, J., Kallio, K., Hallikainen, M. 2002, Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sensing of Environment, 79, 51-59. https://doi.org/10.1016/S0034-4257(01)00238-3 es_ES
dc.description.references Korshin, G.V., Li, C.W., Benjamin, M.M. 1997. Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory. Water Research, 31, 1787-1795. https://doi.org/10.1016/S0043-1354(97)00006-7 es_ES
dc.description.references Kratzer, S., Brockmann, C., Moore, G. 2008. Using MERIS full resolution data to monitor coastal waters - A case study from Himmerfjärden, a fjordlike bay in the northwestern Baltic Sea. Remote Sensing of Environment, 112(5), 2284-2300. https://doi.org/10.1016/j.rse.2007.10.006 es_ES
dc.description.references Lee, Z., Shang, S., Hu, C., Du, K., Weidemann, A., Hou, W., Lin, J., Lin, G. 2016. Secchi disk depth: a new theory and mechanistic model for underwater visibility. Remote Sens. Environ., 169, 139-149. https://doi.org/10.1016/j.rse.2015.08.002 es_ES
dc.description.references Matthews, M.W. 2011. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. International Journal of Remote Sensing, 32(21), 6855-6899. https://doi.org/10.1080/01431161.2010.512947 es_ES
dc.description.references Mosquera, A., Torres, J.M., González-Vilas, L., Martínez-Iglesias, G., Pazos, Y. 2006. Estudio de una floración tóxica de Pseudonitzschias sp. en las costas de Galicia usando una imagen MERIS y datos in situ. Revista de Teledetección, 25, 75-79. Disponible en: http://www.aet.org.es/revistas/revista25/AET25- 15.pdf. Último acceso: Diciembre de 2019. es_ES
dc.description.references Mueller, J. L. 2000. SeaWiFS algorithm for the diffuse attenuation coefficient, K (490), using water-leaving radiances at 490 and 555 nm. SeaWiFS Postlaunch Calibration and Validation Analyses, part 3, edited by S. B. Hooker, pp. 24-27, NASA Goddard Space Flight Center. es_ES
dc.description.references Page, B., Kumar, A., Mishra, D. 2018. A novel crosssatellite based assessment of the spatio-temporal development of a cyanobacterial harmful algal bloom. Int. J. Appl. Earth Obs. Geoinf., 66, 68-81. https://doi.org/10.1016/j.jag.2017.11.003 es_ES
dc.description.references Page, B., Olmanson, L., Mishra, D. 2019. A harmonized image processing workflow using Sentinel-2/MSI and Landsat-8/OLI for mapping water clarity in optically variable lake systems. Remote Sens. Environ., 231, 111284. https://doi.org/10.1016/j.rse.2019.111284 es_ES
dc.description.references Pahlevan, N., Chittimalli, S., Balasubramanian, S., Vellucci, V. 2019. Sentinel2/Landsat8 product consistency and implications for monitoring aquatic systems. Remote Sens. Environ., 220, 19-29. https://doi.org/10.1016/j.rse.2018.10.027 es_ES
dc.description.references Pereira-Sandoval, M., Ruescas, A.B., Urrego, P., Delegido, J., Ruiz-Verdú, A, Tenjo, C., SoriaPerpinyà, X., Vicente, E, Soria, J., Peña, R., Moreno, J. 2018. Evaluación de métodos de corrección atmosférica sobre imágenes Sentinel2-MSI en aguas continentales. XVIII Simposio Internacional SELPER y Sistemas de Información Espacial, Noviembre de 2018, La Habana, Cuba. es_ES
dc.description.references Pereira-Sandoval, M., Urrego, P., Ruiz-Verdú, A., Tenjo, C., Delegido, J., Soria-Perpinyà, X., Vicente, E., Soria, J., Moreno, J. 2019a. Calibration and validation of algorithms for the estimation of chlorophyll-a concentration and Secchi depth in inland waters with Sentinel-2. Limnetica, 38(1), 471- 487. https://doi.org/10.1109/IGARSS.2018.8517371 es_ES
dc.description.references Pereira-Sandoval, M., Ruescas, A., Urrego, P., RuizVerdú, A., Delegido, J., Tenjo, C, Soria-Perpinyà, X., Vicente, E., Soria, J., Moreno, J. 2019b. Evaluation of Atmospheric Correction Algorithms over Spanish Inland Waters for Sentinel-2 Multi Spectral Imagery Data. Remote Sensing, 11, 1469. https://doi.org/10.3390/rs11121469 es_ES
dc.description.references Shoaf, W.T., Lium, B.W. 1976. Improved extraction of chlorophyll a and b from algae using dimethyl sulphoxide. Limnol. Oceanogr., 21, 926-928. https://doi.org/10.4319/lo.1976.21.6.0926 es_ES
dc.description.references Soria, X., Vicente, E., Durán, C., Soria, J.M., Peña, R. 2017. Uso de imágenes Landsat-8 para la estimación de la profundidad del disco de Secchi en aguas continentales. XVII Congreso de la Asociación Española de Teledetección. pp. 293-296. Murcia 3-7 octubre 2017. es_ES
dc.description.references Sòria-Perpinyà, X., Urrego, P., Pereira-Sandoval, M., Ruiz-Verdú, A., Peña, R., Soria, J.M., Delegido, J., Vicente, E., Moreno, J. 2019. Monitoring the ecological state of a hypertrophic lake (Albufera of València, Spain) using multitemporal Sentinel-2 images. Limnetica, 38(1), 457-469. https://doi.org/10.23818/limn.38.26 es_ES
dc.description.references Steinmetz, F., Deschamps, P.Y., Ramon, D. 2011. Atmospheric correction in presence of sun glint: Application to MERIS. Optics Express, 19(10), 9783-800. https://doi.org/10.1364/OE.19.009783 es_ES
dc.description.references Toming, K., Kutser, T., Laas, A., Sepp, M., Paavel, B., Nõges, T. 2016. First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery. Remote Sens., 8, 640. https://doi.org/10.3390/rs8080640 es_ES
dc.description.references Tyler, A.N., Hunter, P.D., Spyrakos, E., Groom, S., Constantinescu, A.M., Kitchen, J. 2016. Developments in Earth observation for the assessment and monitoring of inland, transitional, coastal and shelf-sea waters. Sci. Total Environ., 572, 1307-1321. https://doi.org/10.1016/j.scitotenv.2016.01.020 es_ES
dc.description.references Zhao, D., Cai, Y., Jiang, H., Xu, D., Zhang, W., An, S. 2011. Estimation of water clarity in Taihu Lake and surrounding rivers using Landsat imagery. Advances in Water Resources, 34(2), 165-173. https://doi.org/10.1016/j.advwatres.2010.08.010 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem