- -

Influence of high temperatures on concrete pillars confined with CFRP

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of high temperatures on concrete pillars confined with CFRP

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Biosca, Juan es_ES
dc.contributor.author Fabra, Gabriel es_ES
dc.contributor.author Vercher Sanchis, José es_ES
dc.contributor.author Soriano Cubells, Mª Juana es_ES
dc.contributor.author López Patiño, Mª Gracia es_ES
dc.contributor.author Tormo-Esteve, Santiago es_ES
dc.date.accessioned 2020-03-06T13:13:53Z
dc.date.available 2020-03-06T13:13:53Z
dc.date.issued 2019-01-25 es_ES
dc.identifier.uri http://hdl.handle.net/10251/138464
dc.description.abstract [EN] Concrete is a quite recent material in the history of architecture. However, there are a large number of buildings whose structure consists on this material nowadays. Despite its excellent performance, concrete has a useful lifetime. When this time comes to its end, the structural element needs to be treated, repaired or replaced. Nowadays many of the concrete constructions are reaching, or already surpassing, the useful lifetime of the material. At this point, the Carbon Fiber Reinforced Polymer (CFRP) takes on importance, appearing on the market as a modern and high performance tool, in terms of structural reinforcement of the concrete. Nevertheless, this relatively new system presents yet some aspects to study and research, such as its long-term behaviour under extreme conditions. This is the departure point of our research, focused on the response of the CFRP system, both fiber and matrix, to adverse temperature conditions. This high and maintained temperature can be reached in places such as structures undergone to large periods of solar radiation around Equator latitudes, machinery installations enclosures which generate high temperatures focused on specific points, and brief small fires, among other situations, which surpass the maximum service temperature recommended by the manufacturers. In order to study this influence, a comparison of the compressive strengths of three groups of standard concrete test specimens has been carried out. Each group consisted of three cylindrical specimens, all manufactured on the same date. The first two groups were tested after their 28 day curing in chamber: one of them without any confinement and the other with CFRP sheet applied according to the manufacturer's specifications. The third group of specimens spent 90 days on a climatic chamber subjected to a temperature of 75°C, above the maximum temperature recommended by the manufacturer, 50°C. This third group was tested 388 days after their manufacture. In order to obtain a reliable basis on which to compare the effective strength provided by the deteriorated CFRP, it was needed to calculate the acquisition of theoretical strength that the concrete would have reached after the mentioned period of time without any added reinforcement. With all the results, it is possible to conclude that, after this period of heat attack, despite having produced an aesthetic degradation of the CFRP sheets, most of the compressive strength of the specimens remains. es_ES
dc.language Inglés es_ES
dc.publisher Trans Tech Publications es_ES
dc.relation.ispartof Applied Mechanics and Materials (Online) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Structural reinforcement es_ES
dc.subject Carbon fiber reinforced polymer es_ES
dc.subject Concrete strength acquisition es_ES
dc.subject Concrete cylindrical specimen es_ES
dc.subject Concrete cylinder compression test es_ES
dc.subject Climatic chamber es_ES
dc.subject High temperature effect es_ES
dc.subject.classification CONSTRUCCIONES ARQUITECTONICAS es_ES
dc.title Influence of high temperatures on concrete pillars confined with CFRP es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4028/www.scientific.net/AMM.887.64 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques es_ES
dc.description.bibliographicCitation Biosca, J.; Fabra, G.; Vercher Sanchis, J.; Soriano Cubells, MJ.; López Patiño, MG.; Tormo-Esteve, S. (2019). Influence of high temperatures on concrete pillars confined with CFRP. Applied Mechanics and Materials (Online). 887:64-71. https://doi.org/10.4028/www.scientific.net/AMM.887.64 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.4028/www.scientific.net/AMM.887.64 es_ES
dc.description.upvformatpinicio 64 es_ES
dc.description.upvformatpfin 71 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 887 es_ES
dc.identifier.eissn 1662-7482 es_ES
dc.relation.pasarela S\376885 es_ES
dc.description.references P. P. Calle, Análisis Teórico-Experimental de Pilares y Vigas de Hormigón Armado Reforzados con Fibra de Carbono, Universidad Politécnica de Madrid, (2011). es_ES
dc.description.references Ll. Gil, Refuerzo de Estructuras de Hormigón con Laminados de FRP según la FIB, Universidad Politécnica de Cataluña, (2014). es_ES
dc.description.references M. Goldstone, CFRP Strengthening of Reinforced Concrete Beams for Blast and Impact Loads, Faculty of Engineering, University of Wollongong, (2012). es_ES
dc.description.references P.J. Hefferman, Fatigue Behaviour of Reinforced Concrete Beams Strengthened with CFRP Laminates, Department of Civil Engineering Royal Military College of Canada, (1997). es_ES
dc.description.references G. Elnabelsya, Use of Carbon Fiber Reinforced Polymer Sheets as Transverse Reinforcement in Bridge Columns, Faculty of Civil Engineering, University of Ottawa, (2013). es_ES
dc.description.references B. K. Purba, Reinforcement of Circular Concrete Columns with CFRP Jackets, Dalhousie University, (1998). es_ES
dc.description.references UNE 83316: 1991, Ensayos de Hormigón: Fabricación y Conservación de Probetas, Aenor, Madrid, (1991). es_ES
dc.description.references UNE 83304: 1984, Ensayos de Hormigón: Rotura por Compresión, Aenor, Madrid, (1984). es_ES
dc.description.references Ministerio de Fomento EHE-08, Instrucción de Hormigón Estructural, Boletín Oficial del Estado, Madrid, (2008). es_ES
dc.description.references UNE-EN 197-1: 2011, Cemento. Parte 1: Composición, especificaciones y criterios de conformidad de los cementos comunes, Aenor, Madrid, (2011). es_ES
dc.description.references Sika, Hoja de datos de producto, SikaWrap®- 230 C, information on: https://esp.sika.com/dms/getdocument.get/77e047e0.../SikaWrap-230%20C.pdf. es_ES
dc.description.references Sika, Hoja de datos de producto, Sikadur ® -330, information on: https://esp.sika.com/dms/getdocument.get/5a7bab4f-ce9f-3877.../Sikadur-330.pdf. es_ES
dc.description.references J. B. Sistach, J.F. Valverde, J. E. Herrero, G. A. Ortín, P.P. Aguín, J.P. Martí, M. S. Garcia, La Fibra de Carbono, Refuerzo de Estructuras de Hormigón, IEE, Barcelona, (2014). es_ES
dc.description.references Fédération Internationale du Béton, fib Model Code for Concrete Structures 2010, Comité Euro-International du Béton (2010). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem