- -

A graphical user interface for PCA-based MSPC: A benchmark software for multivariate statistical process control in MATLAB

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A graphical user interface for PCA-based MSPC: A benchmark software for multivariate statistical process control in MATLAB

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Villalba-Torán, Pedro Miguel es_ES
dc.contributor.author Sanchís Saez, Javier es_ES
dc.contributor.author Ferrer, Alberto es_ES
dc.date.accessioned 2020-03-06T13:25:34Z
dc.date.available 2020-03-06T13:25:34Z
dc.date.issued 2019-02-15 es_ES
dc.identifier.issn 0169-7439 es_ES
dc.identifier.uri http://hdl.handle.net/10251/138473
dc.description.abstract [EN] A Graphical User Interface (GUI) is developed in MATLAB as a tutorial for understanding the PCA-based MSPC strategy. The software allows users to analyze both simulated and external data sets. Simulated data are obtained from a nonlinear model of a binary distillation column implemented in Simulink. The nonlinear model has four manipulated variables, four controlled variables and three input measured disturbances, plus 41 M fractions corresponding to every column stage. The methodology for PCA-based MSPC is implemented in two phases. During Phase I, the user can simulate the distillation column under normal operating conditions at three different operating points. When the simulation is finished, the GUI obtains the corresponding PCA model automatically. In Phase II, the user can simulate several scenarios with different combinations of disturbances and failures and monitor them using Squared Prediction Error (SPE) and T-2 control charts. Contribution plots are used to diagnose the original variables responsible of such abnormal situations. The software also incorporates the possibility to analyze external multivariate process datasets. es_ES
dc.description.sponsorship Research in this study was partially supported by the Spanish Ministry of Economy, Industry and Competitiveness under the grant DPI2017-82896-C2-1-R. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Chemometrics and Intelligent Laboratory Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Multivariate statistical process control es_ES
dc.subject Principal component analysis es_ES
dc.subject Latent variable es_ES
dc.subject Multivariate control charts es_ES
dc.subject Contribution plots es_ES
dc.subject Benchmark es_ES
dc.subject Nonlinear distillation column es_ES
dc.subject Tutorial es_ES
dc.subject GUI es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title A graphical user interface for PCA-based MSPC: A benchmark software for multivariate statistical process control in MATLAB es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.chemolab.2018.12.004 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-82896-C2-1-R/ES/DISEÑO, CARACTERIZACION Y AJUSTE OPTIMO DE BIOCIRCUITOS SINTETICOS PARA BIOPRODUCCION CON CONTROL DE CARGA METABOLICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Villalba-Torán, PM.; Sanchís Saez, J.; Ferrer, A. (2019). A graphical user interface for PCA-based MSPC: A benchmark software for multivariate statistical process control in MATLAB. Chemometrics and Intelligent Laboratory Systems. 185:135-152. https://doi.org/10.1016/j.chemolab.2018.12.004 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.chemolab.2018.12.004 es_ES
dc.description.upvformatpinicio 135 es_ES
dc.description.upvformatpfin 152 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 185 es_ES
dc.relation.pasarela S\383058 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem