Mostrar el registro sencillo del ítem
dc.contributor.author | Vidal-Puig, Santiago | es_ES |
dc.contributor.author | Vitale, Raffaele | es_ES |
dc.contributor.author | Ferrer, Alberto | es_ES |
dc.date.accessioned | 2020-03-06T13:25:42Z | |
dc.date.available | 2020-03-06T13:25:42Z | |
dc.date.issued | 2019-04-15 | es_ES |
dc.identifier.issn | 0169-7439 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/138476 | |
dc.description.abstract | [EN] A comparison among widely used multivariate latent variable-based techniques for supervised process fault diagnosis was carried out. In order to assess their overall performance several diagnosis criteria were proposed (C-1: most suspected fault assignment; C-2: threshold-based fault assignment). Additionally, it was evaluated i) how the size of the training set used to build the latent variable models affected the diagnosis ability of the methods under study, ii) how they behaved under new types of failures not included in the original list of fault candidates and iii) which of them were more suitable for either early or late diagnosis. To accomplish all these objectives, the approaches were tested in different scenarios. Two datasets were analysed: the first was generated by a Simulink-based model of a binary distillation column, while the second relates to a pasteurisation process performed in a laboratory-scale plant. | es_ES |
dc.description.sponsorship | This research work was partially supported by the Spanish Ministry of Economy and Competitiveness under the project DPI2017-82896-C2-1-R and Shell Global Solutions International B.V. (Amsterdam, The Netherlands). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Chemometrics and Intelligent Laboratory Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Supervised process fault diagnosis | es_ES |
dc.subject | Fault reconstruction | es_ES |
dc.subject | Fault signature | es_ES |
dc.subject | Partial Least Squares Discriminant Analysis (PLS-DA) | es_ES |
dc.subject | Sensitivity | es_ES |
dc.subject | Specificity | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Data-driven supervised fault diagnosis methods based on latent variable models: a comparative study | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.chemolab.2019.02.006 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-82896-C2-1-R/ES/DISEÑO, CARACTERIZACION Y AJUSTE OPTIMO DE BIOCIRCUITOS SINTETICOS PARA BIOPRODUCCION CON CONTROL DE CARGA METABOLICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Vidal-Puig, S.; Vitale, R.; Ferrer, A. (2019). Data-driven supervised fault diagnosis methods based on latent variable models: a comparative study. Chemometrics and Intelligent Laboratory Systems. 187:41-52. https://doi.org/10.1016/j.chemolab.2019.02.006 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.chemolab.2019.02.006 | es_ES |
dc.description.upvformatpinicio | 41 | es_ES |
dc.description.upvformatpfin | 52 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 187 | es_ES |
dc.relation.pasarela | S\380591 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |