- -

Data-driven supervised fault diagnosis methods based on latent variable models: a comparative study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Data-driven supervised fault diagnosis methods based on latent variable models: a comparative study

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vidal-Puig, Santiago es_ES
dc.contributor.author Vitale, Raffaele es_ES
dc.contributor.author Ferrer, Alberto es_ES
dc.date.accessioned 2020-03-06T13:25:42Z
dc.date.available 2020-03-06T13:25:42Z
dc.date.issued 2019-04-15 es_ES
dc.identifier.issn 0169-7439 es_ES
dc.identifier.uri http://hdl.handle.net/10251/138476
dc.description.abstract [EN] A comparison among widely used multivariate latent variable-based techniques for supervised process fault diagnosis was carried out. In order to assess their overall performance several diagnosis criteria were proposed (C-1: most suspected fault assignment; C-2: threshold-based fault assignment). Additionally, it was evaluated i) how the size of the training set used to build the latent variable models affected the diagnosis ability of the methods under study, ii) how they behaved under new types of failures not included in the original list of fault candidates and iii) which of them were more suitable for either early or late diagnosis. To accomplish all these objectives, the approaches were tested in different scenarios. Two datasets were analysed: the first was generated by a Simulink-based model of a binary distillation column, while the second relates to a pasteurisation process performed in a laboratory-scale plant. es_ES
dc.description.sponsorship This research work was partially supported by the Spanish Ministry of Economy and Competitiveness under the project DPI2017-82896-C2-1-R and Shell Global Solutions International B.V. (Amsterdam, The Netherlands). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Chemometrics and Intelligent Laboratory Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Supervised process fault diagnosis es_ES
dc.subject Fault reconstruction es_ES
dc.subject Fault signature es_ES
dc.subject Partial Least Squares Discriminant Analysis (PLS-DA) es_ES
dc.subject Sensitivity es_ES
dc.subject Specificity es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Data-driven supervised fault diagnosis methods based on latent variable models: a comparative study es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.chemolab.2019.02.006 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-82896-C2-1-R/ES/DISEÑO, CARACTERIZACION Y AJUSTE OPTIMO DE BIOCIRCUITOS SINTETICOS PARA BIOPRODUCCION CON CONTROL DE CARGA METABOLICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Vidal-Puig, S.; Vitale, R.; Ferrer, A. (2019). Data-driven supervised fault diagnosis methods based on latent variable models: a comparative study. Chemometrics and Intelligent Laboratory Systems. 187:41-52. https://doi.org/10.1016/j.chemolab.2019.02.006 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.chemolab.2019.02.006 es_ES
dc.description.upvformatpinicio 41 es_ES
dc.description.upvformatpfin 52 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 187 es_ES
dc.relation.pasarela S\380591 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem