Mostrar el registro sencillo del ítem
dc.contributor.author | Ginovart, Marta | es_ES |
dc.contributor.author | Tutusaus, Albert | es_ES |
dc.contributor.author | Mas, M. Teresa | es_ES |
dc.date.accessioned | 2020-03-06T13:45:18Z | |
dc.date.available | 2020-03-06T13:45:18Z | |
dc.date.issued | 2019-07-31 | |
dc.identifier.uri | http://hdl.handle.net/10251/138479 | |
dc.description.abstract | [ES] En un sistema biológico, las interacciones entre los organismos pueden ser interespecíficas, cuando se relacionan organismos de la comunidad de diferente especie, o intraespecíficas. Estas interacciones, que pueden ser favorables, desfavorables o indiferentes para el crecimiento, la supervivencia, y/o la reproducción de los organismos, pueden determinar el área de distribución y la situaci´on territorial de la especie, o tener un papel esencial en la evoluci´on temporal de las poblaciones. Amensalismo, comensalismo, depredación, mutualismo, parasitismo, competencia y canibalismo son diferentes tipos de interacciones. Estas pueden establecerse a lo largo del tiempo y en el espacio, siendo normalmente su ´ámbito de actuación local por proximidad o por contacto directo. Se pueden considerar como propias de las especies o como comportamientos probables, que se pueden dar o no, seg´un como sean las condiciones ambientales en las que se encuentren los organismos. Todo esto hace que la modelizaci´on matemática m´as tradicional sufra de muchas limitaciones en este contexto, tanto para el tratamiento de las discontinuidades en el espacio y el tiempo, como para las adaptaciones o cambios repentinos que pueden sufrir los organismos como respuesta a los diversos factores a los que se puedan ver expuestos. El enfoque o perspectiva de los modelos computacionales basados en agentes (ABM) puede considerarse interesante en la representación de estas interacciones. El propósito de este trabajo es mostrar cómo se puede investigar y tratar con interacciones biológicas a través de ABM. En primer lugar se presentan algunos ejemplos de ABM implementados en un entorno de programación de acceso abierto y disponible desde la web, la plataforma multiagente NetLogo. A continuaci´on, escogida una interacci´on intraespec´ıfica particular, como es el canibalismo microbiano que exhibe la bacteria Bacillus subtilis, se presenta el caso de estudio, con el desarrollo del dise˜no conceptual del ABM para su representación, su implementación en NetLogo, y un análisis de sensibilidad unifactorial de alguno de sus par´ametros para explorar la respuesta del sistema virtual bajo distintos escenarios de simulaci´on. El simulador obtenido ser´a manejado en el entorno académico (su origen fue un Trabajo Final de Grado de la titulación Ingeniería de Sistemas Biológicos de la Universitat Politècnica de Catalunya), será útil tanto en la docencia como para la realización de investigaciones vinculadas con estas interacciones microbianas, abriendo expectativas para futuras aplicaciones prácticas | es_ES |
dc.description.abstract | [EN] In a biological system, the interactions between organisms can be interspecific, when they relate organisms of the community of different species, or intraspecific. These interactions, depending on which each case, can be favorable, unfavorable or indifferent to the growth, the survival, and/or the reproduction of the organisms of the affected species, can determine their area of distribution and the territorial situation of the species, or have an essential role in the temporal evolution of the populations. Amensalism, commensalism, depredation, mutualism, parasitism, competition and cannibalism are different types of interactions. These interactions can be established over time and in space, normally their local scope of action is by proximity or direct contact. They can be considered as specific to the species or as probable behaviors, which may or may not occur, depending on the environmental conditions in which the organisms are found. All this means that the more traditional mathematical modeling has many limitations in this context, both for the treatment of discontinuities in space and time, and for adaptations or sudden changes that organisms may suffer as a response to factors to which they may be exposed. The approach or perspective of computational agent-based models (ABM) can be considered interesting in the representation of these interactions. The purpose of this paper is to show how biological interactions can be investigated and treated through ABM. First, some examples of ABM implemented in an open access programming environment and available from the web, the NetLogo multi-agent platform, are presented. Then, choosing a particular intraspecific interaction, such as the microbial cannibalism exhibited by Bacillus subtilis bacteria, the case study is presented, with the development of the conceptual design of the ABM for its representation, its implementation in NetLogo, and a sensitivity analysis unifactorial of some of its parameters to explore the response of the virtual system under different simulation scenarios. The simulator obtained for this study will be employed in an academic setting (its origin was a Final Degree Project in Biological Systems Engineering of the Universitat Polit`ecnica de Catalunya), it will be useful both in teaching and for carrying out research linked to these microbial interactions, opening prospects for future practical applications. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Modelling in Science Education and Learning | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Biological interactions | es_ES |
dc.subject | Microbial cannibalism | es_ES |
dc.subject | Agent-based model | es_ES |
dc.subject | NetLogo | es_ES |
dc.subject | Simulation | es_ES |
dc.subject | Interacciones biológicas | es_ES |
dc.subject | Canibalismo microbiano | es_ES |
dc.subject | Modelo basado en agentes | es_ES |
dc.subject | Simulación | es_ES |
dc.title | Modelización basada en agentes: canibalismo microbiano | es_ES |
dc.title.alternative | Agent-based modeling: microbial canibalism | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/msel.2019.10975 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Ginovart, M.; Tutusaus, A.; Mas, MT. (2019). Modelización basada en agentes: canibalismo microbiano. Modelling in Science Education and Learning. 12(2):5-46. https://doi.org/10.4995/msel.2019.10975 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/msel.2019.10975 | es_ES |
dc.description.upvformatpinicio | 5 | es_ES |
dc.description.upvformatpfin | 46 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1988-3145 | |
dc.relation.pasarela | OJS\10975 | es_ES |
dc.description.references | Abar, S., Theodoropoulo, G. K., Lemarinier, P., O'Hare, G.M.P. (2017). Agent Based Modelling and Simulation tools: A review of the state-of-art software. Computer Science Review, 24, 13-33. https://doi.org/10.1016/j.cosrev.2017.03.001 | es_ES |
dc.description.references | Araujo, P., Gras, A., Ginovart, M., Moulton, V. (2106). INDISIM-Paracoccus, an individual-based and thermodynamic model for a denitrifying bacterium. Journal of Theoretical Biology, 403, 45-58. https://doi.org/10.1016/j.jtbi.2016.05.017 | es_ES |
dc.description.references | Banitz, T., Gras, A., Ginovart, M. (2015). Individual-based modelling of soil organic matter in NetLogo: Transparent, user-friendly, and open. Environmental Modelling & Software 71, 39-45. https://doi.org/10.1016/j.envsoft.2015.05.007 | es_ES |
dc.description.references | Begon, M., Harper, J.L., Towsend, C.R. (1999). Ecology: Individuals, Populations and Communities. 3a edició. Barcelona: Ediciones Omega. S. A. | es_ES |
dc.description.references | Deangelis, D.L., Gros, L.J. (1992). Individual-Based Modelos and Approaches in Ecology. Nueva York: Chapman and Hall. https://doi.org/10.1007/978-1-4757-0869-1 | es_ES |
dc.description.references | Font, M., Ginovart, M. (2016). Modelización de crecimientos microbianos en medios heterogéneos y de movilidad reducida. Modelling in Science Education and Learning, 9, 81-120. https://doi.org/10.4995/msel.2016.5789 | es_ES |
dc.description.references | Fujita, M., Gonzalez-Pastor, J.E., Losick, R. (2005). High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. Journal Bacteriology, 187, 1357-1368. https://doi.org/10.1128/JB.187.4.1357-1368.2005 | es_ES |
dc.description.references | García-Vázquez, J. C., Sancho-Caparrini, F. (2016) NetLogo: Una herramienta de modelado. Payhip. https://payhip.com/b/VhKb. | es_ES |
dc.description.references | Ginovart, M. (2014). Discovering the power of individual-based modelling in teaching and learning: the study of a predator-prey system. Journal of Science Education and Technology, 23, 496-513. https://doi.org/10.1007/s10956-013-9480-6 | es_ES |
dc.description.references | Ginovart, M. (2015). ¿Qué pueden ofrecer los modelos basados en agentes vivos en el contexto docente? Modelling in Science Education and Learning, 8, 5-26. https://doi.org/10.4995/msel.2015.3486 | es_ES |
dc.description.references | Ginovart, M., Carbó, R., Blanco, M., Portell, X. (2018). Digital image analysis of yeast single cells growing in two different oxygen concentrations to analyze the population growth and to assist individual-based modeling. Frontiers Microbiology, 8, 2628. https://doi.org/10.3389/fmicb.2017.02628 | es_ES |
dc.description.references | Ginovart, M., Portell, X., Ferrer-Closas, P., Blanco, M. (2011). Modelos basados en el individuo y la plataforma NetLogo. Union-Revista Iberoamericana de Educación Matemática, 27, 131-150. | es_ES |
dc.description.references | Ginovart, M., Portell, X., Ferrer-Closas, P., Blanco, M. (2012) Modelos basados en el individuo: una metodologia alternativa y atractiva para el estudio de biosistemas. Enseñanza de las ciencias, 30, 93-108. https://doi.org/10.5565/rev/ec/v30n2.572 | es_ES |
dc.description.references | González-Cabaleiro, R., Mitchell, A.M., Smith, W., Wipat, A., Ofiteru, I.D. (2017). Heterogeneity in pure microbial systems: experimental measurements and modeling. Frontiers Microbiology, 8, 1813. https://doi.org/10.3389/fmicb.2017.01813 | es_ES |
dc.description.references | González-Pastor, J. E. (2010). Cannibalism: a social behavior in sporulating Bacillus subtilis. FEMS Microbiology Reviews, 35, 415-424. https://doi.org/10.1111/j.1574-6976.2010.00253.x | es_ES |
dc.description.references | Gonzalez-Pastor, J.E., Hobbs, E.C., Losick, R. (2003) Cannibalism by sporulating bacteria. Science, 301, 510-513. https://doi.org/10.1126/science.1086462 | es_ES |
dc.description.references | Gorochowski, T.E. (2016). Agent-based modelling in synthetic biology. Essays in Biochemistry, 60, 325-336. https://doi.org/10.1042/EBC20160037 | es_ES |
dc.description.references | Grimm, V., Railsback, S.F. (2005). Individual-based modelling and ecology. Princeton and Oxford: Princeton University Press. https://doi.org/10.1515/9781400850624 | es_ES |
dc.description.references | Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, S.K., Huse, G. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198, 115-126. https://doi.org/10.1016/j.ecolmodel.2006.04.023 | es_ES |
dc.description.references | Grimm, V., Berger, U., de Angelis, D.L., Polhill, J.G., Giske, J., Railsback, S.F. (2010).The ODD protocol: A review and first update. Ecological Modelling, 221, 2760-2768. https://doi.org/10.1016/j.ecolmodel.2010.08.019 | es_ES |
dc.description.references | Hellweger. F.L., Bucci, V. (2009). A bunch of tiny individuals - Individual-based modeling for microbes. Ecological Modelling, 220, 8-22. https://doi.org/10.1016/j.ecolmodel.2008.09.004 | es_ES |
dc.description.references | Hellweger, F.L., CLegg, R. J., Clark, J.R., Plugge, C.M., Kreft J. (2016). Advancing microbial sciences by individual-based modelling. Nature Reviews Microbiology, 14. 461-471. https://doi.org/10.1038/nrmicro.2016.62 | es_ES |
dc.description.references | Kaiser, H. (1979). The dynamics of populations as result of the properties of individual animals. Fortschritte der Zoologie, 25, 109-136. | es_ES |
dc.description.references | Kaul, H., Ventikos, Y. (2015). Investigating biocomplexity through the agent-based paradigm. Briefings in Bioinformatics, 16, 137-152. https://doi.org/10.1093/bib/bbt077 | es_ES |
dc.description.references | López, D., Vlamakis, H., Losick, R., Kolter, R. (2009). Cannibalism enhances biofilm development in Bacillus subtilis. Molecular Microbiology, 74, 609-618. https://doi.org/10.1111/j.1365-2958.2009.06882.x | es_ES |
dc.description.references | Lee, J-S., Filatova, T., Ligmann-Zielinska, A., Hassani-Mahmooei, B., Stonedahl., F., Lorscheid, I., Voinov, A., Polhill, G., Sun, Z., Parker, DC. (2015) The Complexities of Agent-Based Modeling Output Analysis. Journal of Artificial Societies and Social Simulation, 18, 4. https://doi.org/10.18564/jasss.2897 | es_ES |
dc.description.references | Macal, C.M., North, M.J. (2013). Successful approaches for teaching agent-based simulation. Journal of Simulation, 7, 1-11. https://doi.org/10.1057/jos.2012.1 | es_ES |
dc.description.references | Minitab Inc. 2012. Minitab Statistical Software Version 17.2.1. Minitab Inc., State College. PA. URL http://www.minitab.com/. | es_ES |
dc.description.references | Molle, V., Fujita, M., Jensen, S.T., Eichenberger, P., González-Pastor, J.E., Liu, J.S., Losick, R. (2003). The Spo0A regulon of Bacillus subtilis. Molecular Microbiology, 50, 1683-1701. https://doi.org/10.1046/j.1365-2958.2003.03818.x | es_ES |
dc.description.references | Railsback, S.F., Grimm, V. (2012) Agent-based and individual-based modeling: a practical introduction. Princeton University Press: Princeton. | es_ES |
dc.description.references | Ricklefs, R.E. (1998). Invitación a la Ecología. La economía de la naturaleza. 4ª edición. Panamericana: Buenos Aires. | es_ES |
dc.description.references | Shiflet, A.B., Shiflet, G.W. (2014). An Introduction to Agent-based Modeling for Undergraduates. Procedia Computer Science, 29, 1392-1402. | es_ES |
dc.description.references | https://doi.org/10.1016/j.procs.2014.05.126 | es_ES |
dc.description.references | Uchmanski, J., Grimm, V. (1996). Individual-based modelling in ecology: What makes the difference? Trends in Ecology & Evolution, 11, 437-440. https://doi.org/10.1016/0169-5347(96)20091-6 | es_ES |
dc.description.references | Wilensky, U. (1997). NetLogo Wolf Sheep Predation model. http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. | es_ES |
dc.description.references | Wilensky, U. (1997). NetLogo Cooperation model. http://ccl.northwestern.edu/netlogo/models/Cooperation. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. | es_ES |
dc.description.references | Wilensky. U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling. Northwestern University. Evanston. IL. | es_ES |
dc.description.references | Wilensky, U. (2006). NetLogo Tabonuco Yagrumo Hybrid model. http://ccl.northwestern.edu/netlogo/models/TabonucoYagrumoHybrid. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. | es_ES |
dc.description.references | Wilensky, U., Rand, W. (2015). An Introduction to Agent-Based Modeling: Modeling Natural, Social, and Engineered Complex Systems with NetLogo. MIT Press: Hong Kong. | es_ES |
dc.description.references | Wilensky, U., Reisman, K. (2006). Thinking like a Wolf, a Sheep, or a Firefly: Learning Biology through Constructing and Testing Computational Theories - An Embodied Modeling Approach. Cognition and Instruction, 24, 171-209. https://doi.org/10.1207/s1532690xci2402_1 | es_ES |
dc.description.references | Williams, R. A. (2018). Lessons learned on development and application of agent-based models of complex dynamical systems. Simulation Modelling Practice and Theory, 83, 201-212. https://doi.org/10.1016/j.simpat.2017.11.001 | es_ES |
dc.description.references | Wilmoth, J., Doak, P., Timm, A., Halsted, M., Anderson, J.D., Prats, C., Portell, X., Ginovart, M., Retterer, S., Fuentes-Cabrera, M. (2018). A microfluidics and agent-based modeling framework for investigating spatial organization in bacterial colonies: the case of Pseudomonas aeruginosa and Type VI Secretion Interactions. Frontiers Microbiology, 9, 33. https://doi.org/10.3389/fmicb.2018.00033 | es_ES |