- -

Kinematic Design of a New Four Degree-of-Freedom Parallel Robot for Knee Rehabilitation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Kinematic Design of a New Four Degree-of-Freedom Parallel Robot for Knee Rehabilitation

Show full item record

Aginaga, J.; Iriarte Goñi, X.; Plaza, A.; Mata Amela, V. (2018). Kinematic Design of a New Four Degree-of-Freedom Parallel Robot for Knee Rehabilitation. Journal of Mechanical Design. 140(9). https://doi.org/10.1115/1.4040168

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/138702

Files in this item

Item Metadata

Title: Kinematic Design of a New Four Degree-of-Freedom Parallel Robot for Knee Rehabilitation
Author: Aginaga, J. Iriarte Goñi, X. Plaza, A. Mata Amela, Vicente
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Issued date:
Abstract:
[EN] Rehabilitation robots are increasingly being developed in order to be used by injured people to perform exercise and training. As these exercises do not need wide range movements, some parallel robots with lower ...[+]
Copyrigths: Cerrado
Source:
Journal of Mechanical Design. (issn: 1050-0472 )
DOI: 10.1115/1.4040168
Publisher:
ASME International
Publisher version: https://doi.org/10.1115/1.4040168
Project ID:
info:eu-repo/grantAgreement/MINECO//DPI2013-44227-R/ES/METODOLOGIA DE DISEÑO DE SISTEMAS BIOMECATRONICOS. APLICACION AL DESARROLLO DE UN ROBOT PARALELO HIBRIDO PARA DIAGNOSTICO Y REHABILITACION/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-84201-R/ES/INTEGRACION DE MODELOS BIOMECANICOS EN EL DESARROLLO Y OPERACION DE ROBOTS REHABILITADORES RECONFIGURABLES/
Thanks:
This work was funded by the Plan Nacional de I + D, Comision Interministerial de Ciencia y Tecnologia (FEDER-CICYT) under the projects DPI2013-44227-R and DPI2017-84201-R.
Type: Artículo

References

Chablat, D., & Wenger, P. (2003). Architecture optimization of a 3-DOF translational parallel mechanism for machining applications, the orthoglide. IEEE Transactions on Robotics and Automation, 19(3), 403-410. doi:10.1109/tra.2003.810242

Salgado, O., Altuzarra, O., Petuya, V., & Hernández, A. (2008). Synthesis and Design of a Novel 3T1R Fully-Parallel Manipulator. Journal of Mechanical Design, 130(4). doi:10.1115/1.2839005

Briot, S., & Bonev, I. A. (2009). Pantopteron: A New Fully Decoupled 3DOF Translational Parallel Robot for Pick-and-Place Applications. Journal of Mechanisms and Robotics, 1(2). doi:10.1115/1.3046125 [+]
Chablat, D., & Wenger, P. (2003). Architecture optimization of a 3-DOF translational parallel mechanism for machining applications, the orthoglide. IEEE Transactions on Robotics and Automation, 19(3), 403-410. doi:10.1109/tra.2003.810242

Salgado, O., Altuzarra, O., Petuya, V., & Hernández, A. (2008). Synthesis and Design of a Novel 3T1R Fully-Parallel Manipulator. Journal of Mechanical Design, 130(4). doi:10.1115/1.2839005

Briot, S., & Bonev, I. A. (2009). Pantopteron: A New Fully Decoupled 3DOF Translational Parallel Robot for Pick-and-Place Applications. Journal of Mechanisms and Robotics, 1(2). doi:10.1115/1.3046125

Company, O., Pierrot, F., Krut, S., Baradat, C., & Nabat, V. (2011). Par2: a spatial mechanism for fast planar two-degree-of-freedom pick-and-place applications. Meccanica, 46(1), 239-248. doi:10.1007/s11012-010-9413-x

Xie, F., & Liu, X.-J. (2015). Design and Development of a High-Speed and High-Rotation Robot With Four Identical Arms and a Single Platform. Journal of Mechanisms and Robotics, 7(4). doi:10.1115/1.4029440

Kuo, C.-H., & Dai, J. S. (2012). Kinematics of a Fully-Decoupled Remote Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery. Journal of Medical Devices, 6(2). doi:10.1115/1.4006541

Bi, Z. M. (2013). Design of a spherical parallel kinematic machine for ankle rehabilitation. Advanced Robotics, 27(2), 121-132. doi:10.1080/01691864.2012.703306

Chaker, A., Mlika, A., Laribi, M. A., Romdhane, L., & Zeghloul, S. (2012). Synthesis of spherical parallel manipulator for dexterous medical task. Frontiers of Mechanical Engineering, 7(2), 150-162. doi:10.1007/s11465-012-0325-4

Plitea, N., Szilaghyi, A., & Pisla, D. (2015). Kinematic analysis of a new 5-DOF modular parallel robot for brachytherapy. Robotics and Computer-Integrated Manufacturing, 31, 70-80. doi:10.1016/j.rcim.2014.07.005

Jamwal, P. K., Hussain, S., & Xie, S. Q. (2013). Review on design and control aspects of ankle rehabilitation robots. Disability and Rehabilitation: Assistive Technology, 10(2), 93-101. doi:10.3109/17483107.2013.866986

Rastegarpanah, A., Saadat, M., & Borboni, A. (2016). Parallel Robot for Lower Limb Rehabilitation Exercises. Applied Bionics and Biomechanics, 2016, 1-10. doi:10.1155/2016/8584735

Wiertsema, S. H., van Hooff, H. J. A., Migchelsen, L. A. A., & Steultjens, M. P. M. (2008). Reliability of the KT1000 arthrometer and the Lachman test in patients with an ACL rupture. The Knee, 15(2), 107-110. doi:10.1016/j.knee.2008.01.003

Lopomo, N., Zaffagnini, S., Signorelli, C., Bignozzi, S., Giordano, G., Marcheggiani Muccioli, G. M., & Visani, A. (2012). An original clinical methodology for non-invasive assessment of pivot-shift test. Computer Methods in Biomechanics and Biomedical Engineering, 15(12), 1323-1328. doi:10.1080/10255842.2011.591788

Chen, W., and Zhao, M., 2001, “A Novel 4-DOF Parallel Manipulator and Its Kinematic Modelling,” IEEE International Conference on Robotics and Automation (ICRA), Seoul, South Korea, May 21–26, pp. 3350–3355.10.1109/ROBOT.2001.933135

Ghaffari, H., Payeganeh, G., & Arbabtafti, M. (2014). Kinematic design of a novel 4-DOF parallel mechanism for turbine blade machining. The International Journal of Advanced Manufacturing Technology, 74(5-8), 729-739. doi:10.1007/s00170-014-6015-0

Altuzarra, O., Macho, E., Aginaga, J., & Petuya, V. (2014). Design of a solar tracking parallel mechanism with low energy consumption. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(3), 566-579. doi:10.1177/0954406214537249

Gan, D., Dai, J. S., Dias, J., Umer, R., & Seneviratne, L. (2015). Singularity-Free Workspace Aimed Optimal Design of a 2T2R Parallel Mechanism for Automated Fiber Placement. Journal of Mechanisms and Robotics, 7(4). doi:10.1115/1.4029957

Kumar, N., Piccin, O., & Bayle, B. (2014). A task-based type synthesis of novel 2T2R parallel mechanisms. Mechanism and Machine Theory, 77, 59-72. doi:10.1016/j.mechmachtheory.2014.02.007

Mohan, S., Mohanta, J. K., Kurtenbach, S., Paris, J., Corves, B., & Huesing, M. (2017). Design, development and control of a 2PRP-2PPR planar parallel manipulator for lower limb rehabilitation therapies. Mechanism and Machine Theory, 112, 272-294. doi:10.1016/j.mechmachtheory.2017.03.001

Wang, C., Fang, Y., & Fang, H. (2015). Novel 2R3T and 2R2T parallel mechanisms with high rotational capability. Robotica, 35(2), 401-418. doi:10.1017/s0263574715000636

Araujo-Gómez, P., Mata, V., Díaz-Rodríguez, M., Valera, A., & Page, A. (2017). Design and Kinematic Analysis of a Novel 3UPS/RPU Parallel Kinematic Mechanism With 2T2R Motion for Knee Diagnosis and Rehabilitation Tasks. Journal of Mechanisms and Robotics, 9(6). doi:10.1115/1.4037800

Nabat, V., de la, O., Rodríguez, M., Company, O.Krut, S., and Pierrot, V., 2005, “Par4: Very High Speed Parallel Robot for Pick-and-Place,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Edmonton, AB, Canada, Aug. 2–6, pp. 553–558.10.1109/IROS.2005.1545143

Lambert, P., and Herder, J. L., 2015, “A Novel Parallel Haptic Device With 7 Degrees of Freedom,” IEEE World Haptics Conference (WHC), Evanston, IL, June 22–26, pp. 183–188.10.1109/WHC.2015.7177711

Hoevenaars, A. G. L., Gosselin, C., Lambert, P., & Herder, J. L. (2017). A Systematic Approach for the Jacobian Analysis of Parallel Manipulators with Two End-Effectors. Mechanism and Machine Theory, 109, 171-194. doi:10.1016/j.mechmachtheory.2016.10.022

Ding, X., Kong, X., & Dai, J. S. (Eds.). (2016). Advances in Reconfigurable Mechanisms and Robots II. Mechanisms and Machine Science. doi:10.1007/978-3-319-23327-7

Gosselin, C., & Angeles, J. (1990). Singularity analysis of closed-loop kinematic chains. IEEE Transactions on Robotics and Automation, 6(3), 281-290. doi:10.1109/70.56660

Wang, J., & Gosselin, C. M. (2004). Kinematic Analysis and Design of Kinematically Redundant Parallel Mechanisms. Journal of Mechanical Design, 126(1), 109-118. doi:10.1115/1.1641189

Isaksson, M. (2017). Kinematically Redundant Planar Parallel Mechanisms for Optimal Singularity Avoidance. Journal of Mechanical Design, 139(4). doi:10.1115/1.4035677

Aginaga, J., Zabalza, I., Altuzarra, O., & Nájera, J. (2012). Improving static stiffness of the parallel manipulator using inverse singularities. Robotics and Computer-Integrated Manufacturing, 28(4), 458-471. doi:10.1016/j.rcim.2012.02.003

Ma, O., and Angeles, J., 1991, “Architecture Singularities of Platform Manipulators,” IEEE International Conference on Robotics and Automation (ICRA), Sacramento, CA, Apr. 9–11, pp. 1542–1547.10.1109/ROBOT.1991.131835

Joshi, S. A., & Tsai, L.-W. (2002). Jacobian Analysis of Limited-DOF Parallel Manipulators. Journal of Mechanical Design, 124(2), 254-258. doi:10.1115/1.1469549

St-Onge, B. M., & Gosselin, C. M. (2000). Singularity Analysis and Representation of the General Gough-Stewart Platform. The International Journal of Robotics Research, 19(3), 271-288. doi:10.1177/02783640022066860

Merlet, J.-P. (1999). Determination of 6D Workspaces of Gough-Type Parallel Manipulator and Comparison between Different Geometries. The International Journal of Robotics Research, 18(9), 902-916. doi:10.1177/02783649922066646

Bonev, I. A., & Ryu, J. (2001). A geometrical method for computing the constant-orientation workspace of 6-PRRS parallel manipulators. Mechanism and Machine Theory, 36(1), 1-13. doi:10.1016/s0094-114x(00)00031-8

Bonev, I. A., & Ryu, J. (2001). A new approach to orientation workspace analysis of 6-DOF parallel manipulators. Mechanism and Machine Theory, 36(1), 15-28. doi:10.1016/s0094-114x(00)00032-x

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record