Mostrar el registro sencillo del ítem
dc.contributor.author | Ibáñez-Escriche, Noelia | es_ES |
dc.contributor.author | Garcia, M. | es_ES |
dc.contributor.author | Sorensen, D. | es_ES |
dc.date.accessioned | 2020-03-12T06:51:54Z | |
dc.date.available | 2020-03-12T06:51:54Z | |
dc.date.issued | 2010-06 | es_ES |
dc.identifier.issn | 0931-2668 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/138746 | |
dc.description.abstract | [EN] This note provides a description of software that allows to fit Bayesian genetically structured variance models using Markov chain Monte Carlo (MCMC). The gsevm v.2 program was written in Fortran 90. The DOS and Unix executable programs, the user's guide, and some example files are freely available for research purposes at http://www.bdporc.irta.es/estudis.jsp. The main feature of the program is to compute Monte Carlo estimates of marginal posterior distributions of parameters of interest. The program is quite flexible, allowing the user to fit a variety of linear models at the level of the mean and the logvariance. | es_ES |
dc.description.sponsorship | The authors are grateful to Rasmus Waagepetersen for computational and statistical input over the years. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | Journal of Animal Breeding and Genetics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Bayesian analysis | es_ES |
dc.subject | Heterogeneous residual variance | es_ES |
dc.subject | MCMC software | es_ES |
dc.subject.classification | PRODUCCION ANIMAL | es_ES |
dc.title | GSEVM v.2: MCMC software to analyze genetically structured environmental variance models | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/j.1439-0388.2009.00846.x | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal | es_ES |
dc.description.bibliographicCitation | Ibáñez-Escriche, N.; Garcia, M.; Sorensen, D. (2010). GSEVM v.2: MCMC software to analyze genetically structured environmental variance models. Journal of Animal Breeding and Genetics. 127(3):249-251. https://doi.org/10.1111/j.1439-0388.2009.00846.x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/j.1439-0388.2009.00846.x | es_ES |
dc.description.upvformatpinicio | 249 | es_ES |
dc.description.upvformatpfin | 251 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 127 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\392953 | es_ES |
dc.description.references | Gutiérrez, J., Nieto, B., Piqueras, P., Ibáñez, N., & Salgado, C. (2006). Genetic parameters for canalisation analysis of litter size and litter weight traits at birth in mice. Genetics Selection Evolution, 38(5), 445. doi:10.1186/1297-9686-38-5-445 | es_ES |
dc.description.references | Henderson, C. R. (1976). A Simple Method for Computing the Inverse of a Numerator Relationship Matrix Used in Prediction of Breeding Values. Biometrics, 32(1), 69. doi:10.2307/2529339 | es_ES |
dc.description.references | Ibáñez-Escriche, N., Sorensen, D., Waagepetersen, R., & Blasco, A. (2008). Selection for Environmental Variation: A Statistical Analysis and Power Calculations to Detect Response. Genetics, 180(4), 2209-2226. doi:10.1534/genetics.108.091678 | es_ES |
dc.description.references | SanCristobal-Gaudy, M., Elsen, J.-M., Bodin, L., & Chevalet, C. (1998). Prediction of the response to a selection for canalisation of a continuous trait in animal breeding. Genetics Selection Evolution, 30(5), 423. doi:10.1186/1297-9686-30-5-423 | es_ES |
dc.description.references | Sorensen, D., & Gianola, D. (2002). Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics. Statistics for Biology and Health. doi:10.1007/b98952 | es_ES |
dc.description.references | SORENSEN, D., & WAAGEPETERSEN, R. (2003). Normal linear models with genetically structured residual variance heterogeneity: a case study. Genetical Research, 82(3), 207-222. doi:10.1017/s0016672303006426 | es_ES |
dc.description.references | Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), 583-639. doi:10.1111/1467-9868.00353 | es_ES |