- -

Radio resource management for data transmission in low power wide area networks integrated with large scale cyber physical systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Radio resource management for data transmission in low power wide area networks integrated with large scale cyber physical systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kim, Dae-Young es_ES
dc.contributor.author Kim, Seokhoon es_ES
dc.contributor.author Hassan Mohamed, Houcine es_ES
dc.contributor.author Park, Jong Hyuk es_ES
dc.date.accessioned 2020-03-12T06:52:00Z
dc.date.available 2020-03-12T06:52:00Z
dc.date.issued 2017-06 es_ES
dc.identifier.issn 1386-7857 es_ES
dc.identifier.uri http://hdl.handle.net/10251/138750
dc.description.abstract [EN] Recent advances in ICT technologies lead to intelligent services based on monitoring data. A system for the intelligent services is called as a cyber physical system (CPS). The CPS is an IoT-Cloud system which is an integrated system between computing world and a physical sensor field. It makes feasible applications by connecting the monitoring data in the physical world to decision making in the computing world. That is, between the physical world and the computing world, the CPS supports various interactions to objects as IoT-Cloud system. In the physical sensor field of the CPS, a sensor network, which consists of sensors and actuators is constructed. ZigBee is considered as the representative wireless communication technology for the sensor network. However, it has short transmission range and uses shared frequency band with high competition. Therefore, it is not suitable for the CPS applications with long service range such as smart factory or smart environment monitoring. For these CPS applications, it is required to apply low power wide area network (LPWAN) to the sensor network. In this paper, LPWAN requirements for the CPS (i.e., the IoT-Cloud system) applications are analyzed and a radio management method for data transmission of LPWAN in the IoT-Cloud system is designed. For the validation of the efficiency of the data transmission, computer simulations are carried out. Results show that the proposed method outperforms state of the art methods. In this way, the proposal improves the transmission delay over TDMA in between 33 and 51% depending on the number of sensors considered and presents a superior performance in the transmission of data packets. es_ES
dc.description.sponsorship This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2016-R0992-16-1006) supervised by the IITP (Institute for Information & communications Technology Promotion), and this work was supported by the Soonchunhyang University Research Fund. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Cluster Computing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject LPWAN es_ES
dc.subject IoT-cloud system es_ES
dc.subject CPS es_ES
dc.subject Data transmission es_ES
dc.subject Radio resource management es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Radio resource management for data transmission in low power wide area networks integrated with large scale cyber physical systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10586-017-0841-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MSIP//IITP-2016-R0992-16-1006/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Kim, D.; Kim, S.; Hassan Mohamed, H.; Park, JH. (2017). Radio resource management for data transmission in low power wide area networks integrated with large scale cyber physical systems. Cluster Computing. 20(2):1831-1842. https://doi.org/10.1007/s10586-017-0841-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10586-017-0841-4 es_ES
dc.description.upvformatpinicio 1831 es_ES
dc.description.upvformatpfin 1842 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\359721 es_ES
dc.contributor.funder Ministry of Science, ICT and Future Planning, Corea del Sur es_ES
dc.description.references Lin, C.-Y., Zeadally, S., Chen, T.-S., Chang, C.-Y.: Enabling cyber physical systems with wireless sensor networking technologies. Int. J. Distrib. Sens. Netw. 2012 (2012) es_ES
dc.description.references Ali, S., Qaisar, S.B., Saeed, H., Khan, M.F., Naeem, M., Anpalagan, A.: Network challenges for cyber physical systems with tiny wireless devices: a case study on reliable pipeline condition monitoring. MDPI Sens. 15, 7172–7205 (2015) es_ES
dc.description.references Gunes, V., Peter, S., Givargis, T., Vahid, F.: A survey on concepts, applications, and challenges in cyber-physical systems. KSII Trans. Internet Inf. Syst. 8(12), 4242–4267 (2014) es_ES
dc.description.references Lee, E.A.: Cyber physical systems: design challenges, In: Proceedings of IEEE Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing, (2008), pp. 363–369 es_ES
dc.description.references Wan, J., Yan, H., Suo, H., Li, F.: Advances in cyber-physical systems research. KSII Trans. Internet Inf. Syst 5(11), 1891–1908 (2011) es_ES
dc.description.references Correll, N., Arechiga, N., Bolger, A.: Building a distributed robot garden. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems, (2009), pp. 1509–1516 es_ES
dc.description.references Ye, W., Heidemann, J., Estrin, D.: An energy-efficient MAC protocol for wireless sensor networks. In: Proceedings of Joint Conference of the IEEE Computer and Communications Societies, (2002) es_ES
dc.description.references Dam, T.V., Langendoen, K.: An adaptive energy-efficient MAC protocol for wireless sensor networks. In: Proceedings of International Conference on Embedded Networked Sensor Systems, (2003), pp. 171–180 es_ES
dc.description.references Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor networks. In: Proceedings of International Conference on Embedded Networked Sensor Systems, (2004), pp. 95–107 es_ES
dc.description.references Rajendran, V., Obraczke, K., Garcia-Luna-Aceves, J.J.: Energy-efficient, collision-free medium access control for wireless sensor networks. Wirel. Netw. 12(1), 63–78 (2006) es_ES
dc.description.references Ergen, S.C., Varaiya, P.: PEDAMACS: power efficient and delay aware medium access protocol for sensor networks. IEEE Trans. Mob. Comput. 5(7), 920–930 (2006) es_ES
dc.description.references Kim, D.-Y., Cho, J.: Active caching: a transmission method to guarantee desired communication reliability in wireless sensor networks. IEEE Commun. Lett. 12(6), 442–446 (2009) es_ES
dc.description.references Kim, D.Y., Jin, Z., Choi, J., Lee, B., Cho, J.: Transmission power control with the guaranteed communication reliability in WSN. Int. J. Distrib. Sens. Netw. 2015, 12 (2015) es_ES
dc.description.references Jin, Z., Kim, D.-Y., Cho, J., Lee, B.: An analysis on optimal cluster ratio in cluster-based wireless sensor networks. IEEE Sens. J. 15(11), 6413–6423 (2015) es_ES
dc.description.references IEEE, IEEE 802.15.4-2006 Part 15.4: Wireless medium access control (MAC) and Physical layer (PHY) Specifications for low-rate wireless personal area networks (LR-WPAN), (2006) es_ES
dc.description.references ZigBee Alliance, http://www.zigbee.org (2015) es_ES
dc.description.references Xiong, X., Zheng, K., Xu, R., Xiang, W., Chatzimisios, P.: Low power wide area machine-to-machine networks: key techniques and prototype. IEEE Commun. Mag. 53(9), 64–71 (2015) es_ES
dc.description.references LoRa Alliance, https://www.lora-alliance.org (2016) es_ES
dc.description.references SIGFOX, http://www.sigfox.com (2016) es_ES
dc.description.references Weightless, http://www.weightless.org (2015) es_ES
dc.description.references Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002) es_ES
dc.description.references Culler, D., Estrin, D., Srivastava, M.: Guest editors’ introduction: overview of sensor networks. Computer 37(8), 41–49 (2004) es_ES
dc.description.references Mehajabin, N., Razzaque, M.A., Hassan, M.M., Almogren, A., Alamri, A.: Energy-sustainable relay node deployment in wireless sensor networks. Elsevier Comput. Netw. 104, 108–121 (2016) es_ES
dc.description.references Anjum, I., Razzaque, M.A., Hassan, M.M., Alelaiwi, A., Rahman, S.M.M.: Quality-of-service-aware weighted-fair medium access control protocol for coexisting cognitive radio networks. EURASIP J. Wirel. Commun. Netw. 2016, 77 (2016) es_ES
dc.description.references Israr, I., Yaqoob, M.M., Javaid, N., Qasim, U., Khan, Z.A.: Simulation analysis of medium access techniques. In: Proceedings of International Conference on Broadband, Wireless Computing, Communication and Applications, (2012), pp. 602–607 es_ES
dc.description.references Kim, D.Y., Cho, J., Lee, B.: A buffer management technique for guaranteed desired communication reliability and low-power in wireless sensor networks. IEICE Trans. Commun. E93–B(12), 3522–3525 (2010) es_ES
dc.description.references Howitt, I., Gutierrez, J.A.: IEEE 802.15.4 low rate-wireless personal area network coexistence issues. In: Proceedings of IEEE Wireless Communications and Networking Conference, (2003), pp. 1481–1486 es_ES
dc.description.references MacDougall, M.H.: Simulating Computer Systems: Techniques and Tool. The MIT Press, Cambridge (1987) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem