Stubbe, J., & van der Donk, W. A. (1998). Protein Radicals in Enzyme Catalysis. Chemical Reviews, 98(2), 705-762. doi:10.1021/cr9400875
Sono, M., Roach, M. P., Coulter, E. D., & Dawson, J. H. (1996). Heme-Containing Oxygenases. Chemical Reviews, 96(7), 2841-2888. doi:10.1021/cr9500500
Que, L., & Ho, R. Y. N. (1996). Dioxygen Activation by Enzymes with Mononuclear Non-Heme Iron Active Sites. Chemical Reviews, 96(7), 2607-2624. doi:10.1021/cr960039f
[+]
Stubbe, J., & van der Donk, W. A. (1998). Protein Radicals in Enzyme Catalysis. Chemical Reviews, 98(2), 705-762. doi:10.1021/cr9400875
Sono, M., Roach, M. P., Coulter, E. D., & Dawson, J. H. (1996). Heme-Containing Oxygenases. Chemical Reviews, 96(7), 2841-2888. doi:10.1021/cr9500500
Que, L., & Ho, R. Y. N. (1996). Dioxygen Activation by Enzymes with Mononuclear Non-Heme Iron Active Sites. Chemical Reviews, 96(7), 2607-2624. doi:10.1021/cr960039f
Recent reviews: [2a] , Chem. Commun. 1998, 1319–1325, and references therein.
2b – , , New J. Chem. 1998, 201–210.
Wang, Y. (1998). Catalytic Galactose Oxidase Models: Biomimetic Cu(II)-Phenoxyl-Radical Reactivity. Science, 279(5350), 537-540. doi:10.1126/science.279.5350.537
Cox, D. D., & Que, L. (1988). Functional models for catechol 1,2-dioxygenase. The role of the iron(III) center. Journal of the American Chemical Society, 110(24), 8085-8092. doi:10.1021/ja00232a021
Jang, H. G., Cox, D. D., & Que, L. (1991). A highly reactive functional model for the catechol dioxygenases. Structure and properties of [Fe(TPA)DBC]BPh4. Journal of the American Chemical Society, 113(24), 9200-9204. doi:10.1021/ja00024a028
Koch, W. O., & Krüger, H.-J. (1995). Ein sehr reaktives und katalytisch wirksames Modellsystem für intradiolspaltende Catechol-Dioxygenasen: Struktur und Reaktivität von Eisen(III)-Catecholatkomplexen vonN,N′-Dimethyl-2,11-diaza[3.3](2,6)pyridinophan. Angewandte Chemie, 107(23-24), 2928-2931. doi:10.1002/ange.19951072335
Inoue, K., & Iwamura, H. (1994). Ferro- and Ferrimagnetic Ordering in a Two-Dimensional Network Formed by Manganese(II) and 1,3,5-Tris[p-(N-tert-butyl-N-oxyamino)phenyl]benzene. Journal of the American Chemical Society, 116(7), 3173-3174. doi:10.1021/ja00086a077
MANRIQUEZ, J. M., YEE, G. T., MCLEAN, R. S., EPSTEIN, A. J., & MILLER, J. S. (1991). A Room-Temperature Molecular/Organic-Based Magnet. Science, 252(5011), 1415-1417. doi:10.1126/science.252.5011.1415
Zhang, J., Ensling, J., Ksenofontov, V., Gütlich, P., Epstein, A. J., & Miller, J. S. (1998). Molekulare Magnete mitTc-Werten über 100 K und Koerzitivfeldern bis zu 6500 Oe: Synthesen von [MII(tcne)2]⋅x CH2Cl2 (M = Mn, Fe, Co, Ni). Angewandte Chemie, 110(5), 676-679. doi:10.1002/(sici)1521-3757(19980302)110:5<676::aid-ange676>3.0.co;2-x
Zhang, J., Ensling, J., Ksenofontov, V., Gütlich, P., Epstein, A. J., & Miller, J. S. (1998). [MII(tcne)2]⋅x CH2Cl2 (M=Mn, Fe, Co, Ni) Molecule-Based Magnets withTc Values Above 100 K and Coercive Fields up to 6500 Oe. Angewandte Chemie International Edition, 37(5), 657-660. doi:10.1002/(sici)1521-3773(19980316)37:5<657::aid-anie657>3.0.co;2-l
Collins, T. J., Powell, R. D., Slebodnick, C., & Uffelman, E. S. (1991). Stable highly oxidizing cobalt complexes of macrocyclic ligands. Journal of the American Chemical Society, 113(22), 8419-8425. doi:10.1021/ja00022a033
Bartos, M. J., Kidwell, C., Kauffmann, K. E., Gordon-Wylie, S. W., Collins, T. J., Clark, G. C., … Weintraub, S. T. (1995). Ein stabiler Aquaeisen(III)-Komplex mitS = 1: Struktur und spektroskopische Eigenschaften. Angewandte Chemie, 107(11), 1345-1348. doi:10.1002/ange.19951071121
Bartos, M. J., Kidwell, C., Kauffmann, K. E., Gordon-Wylie, S. W., Collins, T. J., Clark, G. C., … Weintraub, S. T. (1995). A Stable Aquairon(III) Complex withS= 1: Structure and Spectroscopic Properties. Angewandte Chemie International Edition in English, 34(11), 1216-1219. doi:10.1002/anie.199512161
[8a] , , , , , , , , Chem. Commun. 1998, 989–990.
8b – , , , , , , , , Chem. Commun. 1997, 2283–2284.
Estrada, J., Fernández, I., Pedro, J., Ottenwaelder, X., Ruiz, R., & Journaux, Y. (1997). Aerobic epoxidation of olefins catalysed by square-planar cobalt(III) complexes of bis-N,N′-disubstituted oxamides and related ligands. Tetrahedron Letters, 38(13), 2377-2380. doi:10.1016/s0040-4039(97)00354-7
Fernández, I., Pedro, J., Rosello, A. L., Ruiz, R., Ottenwaelder, X., & Journaux, Y. (1998). Aerobic epoxidation of olefins catalysed by square-planar nickel(II) complexes of bis- N , N ′-disubstituted oxamides and related ligands. Tetrahedron Letters, 39(18), 2869-2872. doi:10.1016/s0040-4039(98)00321-9
[10a] , , , , , , J. Chem. Soc., Dalton Trans. 1997, 745–751.
10b – , , , , , , , , , , , J. Chem. Soc., Dalton Trans. 1998, 781–790.
, , , , , , manuscript in preparation.
Bossu, F. P., & Margerum, D. W. (1976). The stabilization of trivalent nickel in deprotonated-peptide complexes. Journal of the American Chemical Society, 98(13), 4003-4004. doi:10.1021/ja00429a047
Bossu, F. P., Chellappa, K. L., & Margerum, D. W. (1977). Ligand effects on the thermodynamic stabilization of copper(III)-peptide complexes. Journal of the American Chemical Society, 99(7), 2195-2203. doi:10.1021/ja00449a028
Fabbrizzi, L., Perotti, A., & Poggi, A. (1983). The deprotonated amido vs. the amino group in the stabilization of coordinated trivalent copper and nickel cations. An electrochemical evaluation. Inorganic Chemistry, 22(9), 1411-1412. doi:10.1021/ic00151a035
Anson, F. C., Collins, T. J., Richmond, T. G., Santarsiero, B. D., Toth, J. E., & Treco, B. G. R. T. (1987). Highly stabilized copper(III) complexes. Journal of the American Chemical Society, 109(10), 2974-2979. doi:10.1021/ja00244a020
Collins, T. J., Nichols, T. R., & Uffelman, E. S. (1991). A square-planar nickel(III) complex of an innocent ligand system. Journal of the American Chemical Society, 113(12), 4708-4709. doi:10.1021/ja00012a064
Hanss, J., & Krüger, H.-J. (1996). Der erste stabile Kupfer(III)-Komplex mit aliphatischen Thiolaten als Liganden: struktureller und spektroskopischer Nachweis von CuII- und CuIII-Ionen in Komplexen mit quadratisch-planaren CuN2S2-Koordinationssphären. Angewandte Chemie, 108(23-24), 2989-2991. doi:10.1002/ange.19961082323
Hanss, J., & Krüger, H.-J. (1996). The First Stable Copper(III) Complex Containing Aliphatic Thiolates as Ligands: Structural and Spectroscopic Evidence for CuII and CuIII Ions in Complexes with Square-Planar CuN2S2 Coordination Environments. Angewandte Chemie International Edition in English, 35(2324), 2827-2830. doi:10.1002/anie.199628271
Hanss, J., & Krüger, H.-J. (1998). Erste Isolierung und strukturelle Charakterisierung eines Nickel(III)-Komplexes mit aliphatischen Thiolatdonoren. Angewandte Chemie, 110(3), 366-369. doi:10.1002/(sici)1521-3757(19980202)110:3<366::aid-ange366>3.0.co;2-f
Hanss, J., & Krüger, H.-J. (1998). First Isolation and Structural Characterization of a Nickel(III) Complex Containing Aliphatic Thiolate Donors. Angewandte Chemie International Edition, 37(3), 360-363. doi:10.1002/(sici)1521-3773(19980216)37:3<360::aid-anie360>3.0.co;2-p
Michaelis, L., Schubert, M. P., & Granick, S. (1939). The Free Radicals of the Type of Wurster’s Salts. Journal of the American Chemical Society, 61(8), 1981-1992. doi:10.1021/ja01877a013
Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913
Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Gaussian 94, Revision E. 1, Gaussian, Inc., Pittsburgh, PA, 1995. In the calculations, the metal ions and the ligand have been explicitly taken into account. The PPh4+ counterions have been replaced by Na+ cations and are located at the phosphorus site of PPh4+ cations. Furthermore, the geometry used has been taken from the one determined by X-ray crystallography. We have used the 6–31G* basis set for the ligands atoms. The nickel basis set is that determined by Wachters supplemented with f-polarization function. The sodium cations have been taken as point charges (no vacant orbital on the atom), the core electrons being described by an effective core potential. This procedure, which explicitly takes into account a repulsion potential, avoids too strong orbital polarizations towards the point charges.
Wachters, A. J. H. (1970). Gaussian Basis Set for Molecular Wavefunctions Containing Third‐Row Atoms. The Journal of Chemical Physics, 52(3), 1033-1036. doi:10.1063/1.1673095
Gordon-Wylie, S. W., Claus, B. L., Horwitz, C. P., Leychkis, Y., Workman, J. M., Marzec, A. J., … Collins, T. J. (1998). New Magnetically Coupled Bimetallic Complexes as Potential Building Blocks for Magnetic Materials. Chemistry - A European Journal, 4(11), 2173-2181. doi:10.1002/(sici)1521-3765(19981102)4:11<2173::aid-chem2173>3.0.co;2-q
Surville-Barland, C., Ruiz, R., Aukauloo, A., Journaux, Y., Castro, I., Cervera, B., … Sapin˜a, F. (1998). Tuning up the Tc in Mn(II)Cu(II) bimetallic planes and design of molecular-based magnets. Inorganica Chimica Acta, 278(2), 159-169. doi:10.1016/s0020-1693(98)00016-4
Ruiz, R., Surville-Barland, C., Journaux, Y., Colin, J. C., Castro, I., Cervera, B., … Sapiña, F. (1997). A Family of Oxamido-Bridged MnIICuIIBimetallic Molecular-Based Ferrimagnets: Synthesis, EXAFS Structural Characterization, and Magnetic Properties. Chemistry of Materials, 9(1), 201-209. doi:10.1021/cm9602961
SHELXL93, Program for the Refinement of Crystal Structures, University of Göttingen, DFR, 1993.
[-]