Mostrar el registro sencillo del ítem
dc.contributor.author | Ibáñez-Escriche, Noelia | es_ES |
dc.contributor.author | Varona, L. | es_ES |
dc.contributor.author | Casellas, J. | es_ES |
dc.contributor.author | Quintanilla, R. | es_ES |
dc.contributor.author | Noguera, J. L. | es_ES |
dc.date.accessioned | 2020-03-16T14:46:48Z | |
dc.date.available | 2020-03-16T14:46:48Z | |
dc.date.issued | 2009-01 | es_ES |
dc.identifier.issn | 0021-8812 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/138960 | |
dc.description.abstract | [EN] A Bayesian threshold model was fitted to analyze the genetic parameters for farrowing mortality at the piglet level in Large White, Landrace, and Pietrain populations. Field data were collected between 1999 and 2006. They were provided by 3 pig selection nucleus farms of a commercial breeding company registered in the Spanish Pig Data Bank (BDporc). Analyses were performed on 3 data sets of Large White (60,535 piglets born from 4,551 litters), Landrace (57,987 piglets from 5,008 litters), and Pietrain (42,707 piglets from 4,328 litters) populations. In the analysis, farrowing mortality was considered as a binary trait at the piglet level and scored as 1 (alive piglet) or 0 (dead piglet) at farrowing or within the first 12 h of life. Each breed was analyzed separately, and operational models included systematic effects (year-season, sex, litter size, and order of parity), direct and maternal additive genetic effects, and common litter effects. Analyses were performed by Bayesian methods using Gibbs sampling. The posterior means of direct heritability were 0.02, 0.06, and 0.10, and the posterior means of maternal heritability were 0.05, 0.13, and 0.06 for Large White, Landrace, and Pietrain populations, respectively. The posterior means of genetic correlation between the direct and maternal genetic effects for Landrace and Pietrain populations were -0.56 and -0.53, and the highest posterior intervals at 95% did not include zero. In contrast, the posterior mean of the genetic correlation between direct and maternal effects was 0.15 in the Large White population, with the null correlation included in the highest posterior interval at 95%. These results suggest that the genetic model of evaluation for the Landrace and Pietrain populations should include direct and maternal genetic effects, whereas farrowing mortality could be considered as a sow trait in the Large White population. | es_ES |
dc.description.sponsorship | Financial support was provided by the IRTA, Spain (grant 050221102). The authors gratefully acknowledge the cooperative COPAGA (Lleida, Spain) for its collaboration and particularly thank Sergi Illan, Eva Ramells, and Eva Roca. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Society of Animal Science | es_ES |
dc.relation.ispartof | Journal of Animal Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Bayesian analysis | es_ES |
dc.subject | Farrowing mortality | es_ES |
dc.subject | Genetic parameter | es_ES |
dc.subject | Piglet mortality | es_ES |
dc.subject | Threshold model | es_ES |
dc.subject | Variance component | es_ES |
dc.subject.classification | PRODUCCION ANIMAL | es_ES |
dc.title | Bayesian threshold analysis of direct and maternal genetic parameters for piglet mortality at farrowing in Large White, Landrace, and Pietrain populations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.2527/jas.2007-0670 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/IRTA//0502-21102/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal | es_ES |
dc.description.bibliographicCitation | Ibáñez-Escriche, N.; Varona, L.; Casellas, J.; Quintanilla, R.; Noguera, JL. (2009). Bayesian threshold analysis of direct and maternal genetic parameters for piglet mortality at farrowing in Large White, Landrace, and Pietrain populations. Journal of Animal Science. 87(1):80-87. https://doi.org/10.2527/jas.2007-0670 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.2527/jas.2007-0670 | es_ES |
dc.description.upvformatpinicio | 80 | es_ES |
dc.description.upvformatpfin | 87 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 87 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\392951 | es_ES |
dc.contributor.funder | Institut de Recerca i Tecnologia Agroalimentàries | es_ES |
dc.description.references | Abdel-Azim, G. A., & Berger, P. J. (1999). Properties of threshold model predictions. Journal of Animal Science, 77(3), 582. doi:10.2527/1999.773582x | es_ES |
dc.description.references | Arango, J., Misztal, I., Tsuruta, S., Culbertson, M., & Herring, W. (2005). Threshold-linear estimation of genetic parameters for farrowing mortality, litter size, and test performance of Large White sows. Journal of Animal Science, 83(3), 499-506. doi:10.2527/2005.833499x | es_ES |
dc.description.references | Arango, J., Misztal, I., Tsuruta, S., Culbertson, M., Holl, J. W., & Herring, W. (2006). Genetic study of individual preweaning mortality and birth weight in Large White piglets using threshold-linear models. Livestock Science, 101(1-3), 208-218. doi:10.1016/j.livprodsci.2005.11.011 | es_ES |
dc.description.references | Damgaard, L. H., Rydhmer, L., Løvendahl, P., & Grandinson, K. (2003). Genetic parameters for within-litter variation in piglet birth weight and change in within-litter variation during suckling1. Journal of Animal Science, 81(3), 604-610. doi:10.2527/2003.813604x | es_ES |
dc.description.references | Geyer, C. J. (1992). Practical Markov Chain Monte Carlo. Statistical Science, 7(4), 473-483. doi:10.1214/ss/1177011137 | es_ES |
dc.description.references | Gianola, D. (1982). Theory and Analysis of Threshold Characters. Journal of Animal Science, 54(5), 1079-1096. doi:10.2527/jas1982.5451079x | es_ES |
dc.description.references | Gianola, D., & Sorensen, D. (2004). Quantitative Genetic Models for Describing Simultaneous and Recursive Relationships Between Phenotypes. Genetics, 167(3), 1407-1424. doi:10.1534/genetics.103.025734 | es_ES |
dc.description.references | Grandinson, K. (2005). Genetic background of maternal behaviour and its relation to offspring survival. Livestock Production Science, 93(1), 43-50. doi:10.1016/j.livprodsci.2004.11.005 | es_ES |
dc.description.references | Gutiérrez, J., Nieto, B., Piqueras, P., Ibáñez, N., & Salgado, C. (2006). Genetic parameters for canalisation analysis of litter size and litter weight traits at birth in mice. Genetics Selection Evolution, 38(5), 445. doi:10.1186/1297-9686-38-5-445 | es_ES |
dc.description.references | Holm, B., Bakken, M., Vangen, O., & Rekaya, R. (2004). Genetic analysis of litter size, parturition length, and birth assistance requirements in primiparous sows using a joint linear-threshold animal model1. Journal of Animal Science, 82(9), 2528-2533. doi:10.2527/2004.8292528x | es_ES |
dc.description.references | Johnson, R. K., Nielsen, M. K., & Casey, D. S. (1999). Responses in ovulation rate, embryonal survival, and litter traits in swine to 14 generations of selection to increase litter size. Journal of Animal Science, 77(3), 541. doi:10.2527/1999.773541x | es_ES |
dc.description.references | Kerr, J. C., & Cameron, N. D. (1995). Reproductive performance of pigs selected for components of efficient lean growth. Animal Science, 60(2), 281-290. doi:10.1017/s1357729800008444 | es_ES |
dc.description.references | Knol, E. F., Ducro, B. J., van Arendonk, J. A. M., & van der Lende, T. (2002). Direct, maternal and nurse sow genetic effects on farrowing-, pre-weaning- and total piglet survival. Livestock Production Science, 73(2-3), 153-164. doi:10.1016/s0301-6226(01)00248-2 | es_ES |
dc.description.references | Leenhouwers, J. I., van der Lende, T., & Knol, E. F. (1999). Analysis of stillbirth in different lines of pig. Livestock Production Science, 57(3), 243-253. doi:10.1016/s0301-6226(98)00171-7 | es_ES |
dc.description.references | Mesa, H., Safranski, T. J., Cammack, K. M., Weaber, R. L., & Lamberson, W. R. (2006). Genetic and phenotypic relationships of farrowing and weaning survival to birth and placental weights in pigs1. Journal of Animal Science, 84(1), 32-40. doi:10.2527/2006.84132x | es_ES |
dc.description.references | Meyer, K. (1997). Estimates of genetic parameters for weaning weight of beef cattle accounting for direct-maternal environmental covariances. Livestock Production Science, 52(3), 187-199. doi:10.1016/s0301-6226(97)00144-9 | es_ES |
dc.description.references | Moeller, S. J., Goodwin, R. N., Johnson, R. K., Mabry, J. W., Baas, T. J., & Robison, O. W. (2004). The National Pork Producers Council Maternal Line National Genetic Evaluation Program: A comparison of six maternal genetic lines for female productivity measures over four parities1. Journal of Animal Science, 82(1), 41-53. doi:10.2527/2004.82141x | es_ES |
dc.description.references | Moreno, C., Sorensen, D., García-Cortés, L., Varona, L., & Altarriba, J. (1997). On biased inferences about variance components in the binary threshold model. Genetics Selection Evolution, 29(2), 145. doi:10.1186/1297-9686-29-2-145 | es_ES |
dc.description.references | Su, G., Lund, M. S., & Sorensen, D. (2007). Selection for litter size at day five to improve litter size at weaning and piglet survival rate1. Journal of Animal Science, 85(6), 1385-1392. doi:10.2527/jas.2006-631 | es_ES |
dc.description.references | Tess, M. W., Bennett, G. L., & Dickerson, G. E. (1983). Simulation of Genetic Changes in Life Cycle Efficiency of Pork Production, II. Effects of Components on Efficiency. Journal of Animal Science, 56(2), 354-368. doi:10.2527/jas1983.562354x | es_ES |