- -

Bayesian threshold analysis of direct and maternal genetic parameters for piglet mortality at farrowing in Large White, Landrace, and Pietrain populations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bayesian threshold analysis of direct and maternal genetic parameters for piglet mortality at farrowing in Large White, Landrace, and Pietrain populations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ibáñez-Escriche, Noelia es_ES
dc.contributor.author Varona, L. es_ES
dc.contributor.author Casellas, J. es_ES
dc.contributor.author Quintanilla, R. es_ES
dc.contributor.author Noguera, J. L. es_ES
dc.date.accessioned 2020-03-16T14:46:48Z
dc.date.available 2020-03-16T14:46:48Z
dc.date.issued 2009-01 es_ES
dc.identifier.issn 0021-8812 es_ES
dc.identifier.uri http://hdl.handle.net/10251/138960
dc.description.abstract [EN] A Bayesian threshold model was fitted to analyze the genetic parameters for farrowing mortality at the piglet level in Large White, Landrace, and Pietrain populations. Field data were collected between 1999 and 2006. They were provided by 3 pig selection nucleus farms of a commercial breeding company registered in the Spanish Pig Data Bank (BDporc). Analyses were performed on 3 data sets of Large White (60,535 piglets born from 4,551 litters), Landrace (57,987 piglets from 5,008 litters), and Pietrain (42,707 piglets from 4,328 litters) populations. In the analysis, farrowing mortality was considered as a binary trait at the piglet level and scored as 1 (alive piglet) or 0 (dead piglet) at farrowing or within the first 12 h of life. Each breed was analyzed separately, and operational models included systematic effects (year-season, sex, litter size, and order of parity), direct and maternal additive genetic effects, and common litter effects. Analyses were performed by Bayesian methods using Gibbs sampling. The posterior means of direct heritability were 0.02, 0.06, and 0.10, and the posterior means of maternal heritability were 0.05, 0.13, and 0.06 for Large White, Landrace, and Pietrain populations, respectively. The posterior means of genetic correlation between the direct and maternal genetic effects for Landrace and Pietrain populations were -0.56 and -0.53, and the highest posterior intervals at 95% did not include zero. In contrast, the posterior mean of the genetic correlation between direct and maternal effects was 0.15 in the Large White population, with the null correlation included in the highest posterior interval at 95%. These results suggest that the genetic model of evaluation for the Landrace and Pietrain populations should include direct and maternal genetic effects, whereas farrowing mortality could be considered as a sow trait in the Large White population. es_ES
dc.description.sponsorship Financial support was provided by the IRTA, Spain (grant 050221102). The authors gratefully acknowledge the cooperative COPAGA (Lleida, Spain) for its collaboration and particularly thank Sergi Illan, Eva Ramells, and Eva Roca. es_ES
dc.language Inglés es_ES
dc.publisher American Society of Animal Science es_ES
dc.relation.ispartof Journal of Animal Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bayesian analysis es_ES
dc.subject Farrowing mortality es_ES
dc.subject Genetic parameter es_ES
dc.subject Piglet mortality es_ES
dc.subject Threshold model es_ES
dc.subject Variance component es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Bayesian threshold analysis of direct and maternal genetic parameters for piglet mortality at farrowing in Large White, Landrace, and Pietrain populations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.2527/jas.2007-0670 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/IRTA//0502-21102/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Ibáñez-Escriche, N.; Varona, L.; Casellas, J.; Quintanilla, R.; Noguera, JL. (2009). Bayesian threshold analysis of direct and maternal genetic parameters for piglet mortality at farrowing in Large White, Landrace, and Pietrain populations. Journal of Animal Science. 87(1):80-87. https://doi.org/10.2527/jas.2007-0670 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.2527/jas.2007-0670 es_ES
dc.description.upvformatpinicio 80 es_ES
dc.description.upvformatpfin 87 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 87 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\392951 es_ES
dc.contributor.funder Institut de Recerca i Tecnologia Agroalimentàries es_ES
dc.description.references Abdel-Azim, G. A., & Berger, P. J. (1999). Properties of threshold model predictions. Journal of Animal Science, 77(3), 582. doi:10.2527/1999.773582x es_ES
dc.description.references Arango, J., Misztal, I., Tsuruta, S., Culbertson, M., & Herring, W. (2005). Threshold-linear estimation of genetic parameters for farrowing mortality, litter size, and test performance of Large White sows. Journal of Animal Science, 83(3), 499-506. doi:10.2527/2005.833499x es_ES
dc.description.references Arango, J., Misztal, I., Tsuruta, S., Culbertson, M., Holl, J. W., & Herring, W. (2006). Genetic study of individual preweaning mortality and birth weight in Large White piglets using threshold-linear models. Livestock Science, 101(1-3), 208-218. doi:10.1016/j.livprodsci.2005.11.011 es_ES
dc.description.references Damgaard, L. H., Rydhmer, L., Løvendahl, P., & Grandinson, K. (2003). Genetic parameters for within-litter variation in piglet birth weight and change in within-litter variation during suckling1. Journal of Animal Science, 81(3), 604-610. doi:10.2527/2003.813604x es_ES
dc.description.references Geyer, C. J. (1992). Practical Markov Chain Monte Carlo. Statistical Science, 7(4), 473-483. doi:10.1214/ss/1177011137 es_ES
dc.description.references Gianola, D. (1982). Theory and Analysis of Threshold Characters. Journal of Animal Science, 54(5), 1079-1096. doi:10.2527/jas1982.5451079x es_ES
dc.description.references Gianola, D., & Sorensen, D. (2004). Quantitative Genetic Models for Describing Simultaneous and Recursive Relationships Between Phenotypes. Genetics, 167(3), 1407-1424. doi:10.1534/genetics.103.025734 es_ES
dc.description.references Grandinson, K. (2005). Genetic background of maternal behaviour and its relation to offspring survival. Livestock Production Science, 93(1), 43-50. doi:10.1016/j.livprodsci.2004.11.005 es_ES
dc.description.references Gutiérrez, J., Nieto, B., Piqueras, P., Ibáñez, N., & Salgado, C. (2006). Genetic parameters for canalisation analysis of litter size and litter weight traits at birth in mice. Genetics Selection Evolution, 38(5), 445. doi:10.1186/1297-9686-38-5-445 es_ES
dc.description.references Holm, B., Bakken, M., Vangen, O., & Rekaya, R. (2004). Genetic analysis of litter size, parturition length, and birth assistance requirements in primiparous sows using a joint linear-threshold animal model1. Journal of Animal Science, 82(9), 2528-2533. doi:10.2527/2004.8292528x es_ES
dc.description.references Johnson, R. K., Nielsen, M. K., & Casey, D. S. (1999). Responses in ovulation rate, embryonal survival, and litter traits in swine to 14 generations of selection to increase litter size. Journal of Animal Science, 77(3), 541. doi:10.2527/1999.773541x es_ES
dc.description.references Kerr, J. C., & Cameron, N. D. (1995). Reproductive performance of pigs selected for components of efficient lean growth. Animal Science, 60(2), 281-290. doi:10.1017/s1357729800008444 es_ES
dc.description.references Knol, E. F., Ducro, B. J., van Arendonk, J. A. M., & van der Lende, T. (2002). Direct, maternal and nurse sow genetic effects on farrowing-, pre-weaning- and total piglet survival. Livestock Production Science, 73(2-3), 153-164. doi:10.1016/s0301-6226(01)00248-2 es_ES
dc.description.references Leenhouwers, J. I., van der Lende, T., & Knol, E. F. (1999). Analysis of stillbirth in different lines of pig. Livestock Production Science, 57(3), 243-253. doi:10.1016/s0301-6226(98)00171-7 es_ES
dc.description.references Mesa, H., Safranski, T. J., Cammack, K. M., Weaber, R. L., & Lamberson, W. R. (2006). Genetic and phenotypic relationships of farrowing and weaning survival to birth and placental weights in pigs1. Journal of Animal Science, 84(1), 32-40. doi:10.2527/2006.84132x es_ES
dc.description.references Meyer, K. (1997). Estimates of genetic parameters for weaning weight of beef cattle accounting for direct-maternal environmental covariances. Livestock Production Science, 52(3), 187-199. doi:10.1016/s0301-6226(97)00144-9 es_ES
dc.description.references Moeller, S. J., Goodwin, R. N., Johnson, R. K., Mabry, J. W., Baas, T. J., & Robison, O. W. (2004). The National Pork Producers Council Maternal Line National Genetic Evaluation Program: A comparison of six maternal genetic lines for female productivity measures over four parities1. Journal of Animal Science, 82(1), 41-53. doi:10.2527/2004.82141x es_ES
dc.description.references Moreno, C., Sorensen, D., García-Cortés, L., Varona, L., & Altarriba, J. (1997). On biased inferences about variance components in the binary threshold model. Genetics Selection Evolution, 29(2), 145. doi:10.1186/1297-9686-29-2-145 es_ES
dc.description.references Su, G., Lund, M. S., & Sorensen, D. (2007). Selection for litter size at day five to improve litter size at weaning and piglet survival rate1. Journal of Animal Science, 85(6), 1385-1392. doi:10.2527/jas.2006-631 es_ES
dc.description.references Tess, M. W., Bennett, G. L., & Dickerson, G. E. (1983). Simulation of Genetic Changes in Life Cycle Efficiency of Pork Production, II. Effects of Components on Efficiency. Journal of Animal Science, 56(2), 354-368. doi:10.2527/jas1983.562354x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem