Mostrar el registro sencillo del ítem
dc.contributor.author | Ibáñez-Escriche, Noelia | es_ES |
dc.contributor.author | Reixach, J. | es_ES |
dc.contributor.author | Lleonart, N. | es_ES |
dc.contributor.author | Noguera, J. L. | es_ES |
dc.date.accessioned | 2020-03-16T14:46:50Z | |
dc.date.available | 2020-03-16T14:46:50Z | |
dc.date.issued | 2011-12 | es_ES |
dc.identifier.issn | 0021-8812 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/138962 | |
dc.description.abstract | [EN] Genetic evaluations using purebred data alone and combined purebred and crossbred information were performed for lean meat percentage in a pig breeding scheme. One purebred (PB) model and 2 crossbred models (CCPS1 and CCPS2) were used in the analyses. Data were obtained from the Seleccion Batalle S.A. Company (Riudarenes, Spain) and spanned a period of 4 yr (2006 to 2009). The data corresponded to 3 nuclei of purebred populations, Landrace (LD), Duroc (DU), and Pietrain (PI); 1 multiplying farm with animals from a 2-way cross (TB1; DU x LD); and commercial farms with animals from a 3-way cross (TB2; TB1 x PI). Genetic parameters were similar across the models, with the exception of purebred PI. The DU and LD purebreds presented large heritabilities (0.5 to 0.6) for lean meat percentage, whereas the PI purebred showed a lower heritability (approximately 0.1) for the PB model and moderate heritability for the CCPS1 and CCPS2 models (0.2 to 0.3). The mean reliability of the predicted purebred breeding values was clearly increased when the CCPS1 and CCPS2 models were used. Moreover, a reranking of the animals with important changes in the selection decisions was observed in the PI purebred. In a simulation study, the CCPS1 model achieved a greater response to selection than the PB model for the PI purebred. On another hand, between the CCPS1 and CCPS2 models, CCPS1 was slightly superior in terms of predictive ability, exhibiting a greater robustness. These results illustrate the usefulness of using crossbred models to evaluate lean meat percentage in this pig breeding scheme. | es_ES |
dc.description.sponsorship | Financial support was provided by the IRTA, Lleida, Spain (grant 0502-21191). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Society of Animal Science | es_ES |
dc.relation.ispartof | Journal of Animal Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Bayesian analysis | es_ES |
dc.subject | Crossbred | es_ES |
dc.subject | Cross-validation | es_ES |
dc.subject | Pig | es_ES |
dc.subject | Purebred | es_ES |
dc.subject | Reliability | es_ES |
dc.subject | Response to selection | es_ES |
dc.subject.classification | PRODUCCION ANIMAL | es_ES |
dc.title | Genetic evaluation combining purebred and crossbred data in a pig breeding scheme | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.2527/jas.2011-3959 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/IRTA//0502-21102/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal | es_ES |
dc.description.bibliographicCitation | Ibáñez-Escriche, N.; Reixach, J.; Lleonart, N.; Noguera, JL. (2011). Genetic evaluation combining purebred and crossbred data in a pig breeding scheme. Journal of Animal Science. 89(12):3881-3889. https://doi.org/10.2527/jas.2011-3959 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.2527/jas.2011-3959 | es_ES |
dc.description.upvformatpinicio | 3881 | es_ES |
dc.description.upvformatpfin | 3889 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 89 | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.pasarela | S\393272 | es_ES |
dc.contributor.funder | Institut de Recerca i Tecnologia Agroalimentàries | es_ES |
dc.description.references | Bijma, P., & van Arendonk, J. A. M. (1998). Maximizing genetic gain for the sire line of a crossbreeding scheme utilizing both purebred and crossbred information. Animal Science, 66(2), 529-542. doi:10.1017/s135772980000970x | es_ES |
dc.description.references | Busk, H., Olsen, E. V., & Brøndum, J. (1999). Determination of lean meat in pig carcasses with the Autofom classification system. Meat Science, 52(3), 307-314. doi:10.1016/s0309-1740(99)00007-8 | es_ES |
dc.description.references | Dekkers, J. C. M. (2007). Marker-assisted selection for commercial crossbred performance1. Journal of Animal Science, 85(9), 2104-2114. doi:10.2527/jas.2006-683 | es_ES |
dc.description.references | Ducos, A., Bidanel, J., Ducrocq, V., Boichard, D., & Groeneveld, E. (1993). Multivariate restricted maximum likelihood estimation of genetic parameters for growth, carcass and meat quality traits in French Large White and French Landrace pigs. Genetics Selection Evolution, 25(5), 475. doi:10.1186/1297-9686-25-5-475 | es_ES |
dc.description.references | Elzo, M. A. (1994). Restricted maximum likelihood procedures for the estimation of additive and nonadditive genetic variances and covariances in multibreed populations1. Journal of Animal Science, 72(12), 3055-3065. doi:10.2527/1994.72123055x | es_ES |
dc.description.references | Gilbert, H., Bidanel, J.-P., Gruand, J., Caritez, J.-C., Billon, Y., Guillouet, P., … Sellier, P. (2007). Genetic parameters for residual feed intake in growing pigs, with emphasis on genetic relationships with carcass and meat quality traits. Journal of Animal Science, 85(12), 3182-3188. doi:10.2527/jas.2006-590 | es_ES |
dc.description.references | Knapp, P., Willam, A., & Sölkner, J. (1997). Genetic parameters for lean meat content and meat quality traits in different pig breeds. Livestock Production Science, 52(1), 69-73. doi:10.1016/s0301-6226(97)00120-6 | es_ES |
dc.description.references | Lo, L. L., Fernando, R. L., & Grossman, M. (1993). Covariance between relatives in multibreed populations: additive model. Theoretical and Applied Genetics, 87(4), 423-430. doi:10.1007/bf00215087 | es_ES |
dc.description.references | Lutaaya, E., Misztal, I., Mabry, J. W., Short, T., Timm, H. H., & Holzbauer, R. (2001). Genetic parameter estimates from joint evaluation of purebreds and crossbreds in swine using the crossbred model. Journal of Animal Science, 79(12), 3002. doi:10.2527/2001.79123002x | es_ES |
dc.description.references | Lutaaya, E., Misztal, I., Mabry, J. W., Short, T., Timm, H. H., & Holzbauer, R. (2002). Joint evaluation of purebreds and crossbreds in swine. Journal of Animal Science, 80(9), 2263. doi:10.2527/2002.8092263x | es_ES |
dc.description.references | Munilla Leguizamon, S., & Cantet, R. J. (2010). Equivalence of multibreed animal models and hierarchical Bayes analysis for maternally influenced traits. Genetics Selection Evolution, 42(1), 20. doi:10.1186/1297-9686-42-20 | es_ES |
dc.description.references | Tholen, E., Baulain, U., Henning, M. D., & Schellander, K. (2003). Comparison of different methods to assess the composition of pig bellies in progeny testing. Journal of Animal Science, 81(5), 1177-1184. doi:10.2527/2003.8151177x | es_ES |
dc.description.references | Wei, M. 1992. Combined crossbred and purebred selection in animal breeding. PhD Thesis.Department of Animal Breeding, Wageningen Agricultural University, Wageningen, the Netherlands. | es_ES |