- -

Towards a Universal Semantic Dictionary

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Towards a Universal Semantic Dictionary

Show full item record

Castro-Bleda, MJ.; Iklódi, E.; Recski, G.; Borbély, G. (2019). Towards a Universal Semantic Dictionary. Applied Sciences. 9(19):1-14. https://doi.org/10.3390/app9194060

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/139157

Files in this item

Item Metadata

Title: Towards a Universal Semantic Dictionary
Author: Castro-Bleda, Maria Jose Iklódi, E. Recski, G. Borbély, G.
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
[EN] A novel method for finding linear mappings among word embeddings for several languages, taking as pivot a shared, multilingual embedding space, is proposed in this paper. Previous approaches learned translation matrices ...[+]
Subjects: Natural language processing , Semantics , Word embeddings , Multilingual embeddings , Translation , Artificial neural networks
Copyrigths: Reconocimiento (by)
Source:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app9194060
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/app9194060
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-85854-C4-2-R/ES/AMIC-UPV: ANALISIS AFECTIVO DE INFORMACION MULTIMEDIA CON COMUNICACION INCLUSIVA Y NATURAL/
Thanks:
This research was funded by Spanish MINECO and FEDER grant number TIN2017-85854-C4-2-R.
Type: Artículo

References

Youn, H., Sutton, L., Smith, E., Moore, C., Wilkins, J. F., Maddieson, I., … Bhattacharya, T. (2016). On the universal structure of human lexical semantics. Proceedings of the National Academy of Sciences, 113(7), 1766-1771. doi:10.1073/pnas.1520752113

Ruder, S., Vulić, I., & Søgaard, A. (2019). A Survey of Cross-lingual Word Embedding Models. Journal of Artificial Intelligence Research, 65, 569-631. doi:10.1613/jair.1.11640

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching Word Vectors with Subword Information. Transactions of the Association for Computational Linguistics, 5, 135-146. doi:10.1162/tacl_a_00051

recommendations

 

This item appears in the following Collection(s)

Show full item record