Mostrar el registro sencillo del ítem
dc.contributor.author | Fiore, Sandro | es_ES |
dc.contributor.author | Elia, Donatello | es_ES |
dc.contributor.author | Pires, Carlos E. | es_ES |
dc.contributor.author | Mestre, Demetrio Gomes | es_ES |
dc.contributor.author | Cappiello, Cinzia | es_ES |
dc.contributor.author | Vitali, Monica | es_ES |
dc.contributor.author | Andrade, Nazareno | es_ES |
dc.contributor.author | Braz, Tarciso | es_ES |
dc.contributor.author | Lezzi, Daniele | es_ES |
dc.contributor.author | Moraes, Regina | es_ES |
dc.contributor.author | Basso, Tania | es_ES |
dc.contributor.author | Kozievitch, Nadia P. | es_ES |
dc.contributor.author | Ono Fonseca, Keiko Veronica | es_ES |
dc.contributor.author | Antunes, Nuno | es_ES |
dc.contributor.author | Vieira, Marco | es_ES |
dc.contributor.author | Palazzo, Cosimo | es_ES |
dc.contributor.author | Blanquer Espert, Ignacio | es_ES |
dc.date.accessioned | 2020-03-25T07:21:06Z | |
dc.date.available | 2020-03-25T07:21:06Z | |
dc.date.issued | 2019 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/139363 | |
dc.description | (c) 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. | es_ES |
dc.description.abstract | [EN] Smart urban transportation management can be considered as a multifaceted big data challenge. It strongly relies on the information collected into multiple, widespread, and heterogeneous data sources as well as on the ability to extract actionable insights from them. Besides data, full stack (from platform to services and applications) Information and Communications Technology (ICT) solutions need to be specifically adopted to address smart cities challenges. Smart urban transportation management is one of the key use cases addressed in the context of the EUBra-BIGSEA (Europe-Brazil Collaboration of Big Data Scientific Research through Cloud-Centric Applications) project. This paper specifically focuses on the City Administration Dashboard, a public transport analytics application that has been developed on top of the EUBra-BIGSEA platform and used by the Municipality stakeholders of Curitiba, Brazil, to tackle urban traffic data analysis and planning challenges. The solution proposed in this paper joins together a scalable big and fast data analytics platform, a flexible and dynamic cloud infrastructure, data quality and entity matching algorithms as well as security and privacy techniques. By exploiting an interoperable programming framework based on Python Application Programming Interface (API), it allows an easy, rapid and transparent development of smart cities applications. | es_ES |
dc.description.sponsorship | This work was supported by the European Commission through the Cooperation Programme under EUBra-BIGSEA Horizon 2020 Grant [Este projeto e resultante da 3a Chamada Coordenada BR-UE em Tecnologias da Informacao e Comunicacao (TIC), anunciada pelo Ministerio de Ciencia, Tecnologia e Inovacao (MCTI)] under Grant 690116. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE Access | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Big data | es_ES |
dc.subject | Cloud computing | es_ES |
dc.subject | Data analytics | es_ES |
dc.subject | Data privacy | es_ES |
dc.subject | Data quality | es_ES |
dc.subject | Distributed environment | es_ES |
dc.subject | Public transport management | es_ES |
dc.subject | Smart city | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | An Integrated Big and Fast Data Analytics Platform for Smart Urban Transportation Management | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/ACCESS.2019.2936941 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/690116/EU/EUrope-BRAzil Collaboration on BIG Data Scientific REsearch through Cloud-Centric Applications/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Fiore, S.; Elia, D.; Pires, CE.; Mestre, DG.; Cappiello, C.; Vitali, M.; Andrade, N.... (2019). An Integrated Big and Fast Data Analytics Platform for Smart Urban Transportation Management. IEEE Access. 7:117652-117677. https://doi.org/10.1109/ACCESS.2019.2936941 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/ACCESS.2019.2936941 | es_ES |
dc.description.upvformatpinicio | 117652 | es_ES |
dc.description.upvformatpfin | 117677 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.identifier.eissn | 2169-3536 | es_ES |
dc.relation.pasarela | S\396844 | es_ES |