- -

Underwater Ad Hoc Wireless Communication for Video Delivery

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Underwater Ad Hoc Wireless Communication for Video Delivery

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sendra, Sandra es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Jimenez, Jose M. es_ES
dc.contributor.author Ghafoor, Kayhan Zrar es_ES
dc.date.accessioned 2020-03-26T06:39:28Z
dc.date.available 2020-03-26T06:39:28Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0929-6212 es_ES
dc.identifier.uri http://hdl.handle.net/10251/139458
dc.description.abstract [EN] Due to the high attenuation of the water at high frequencies, underwater communications in freshwater are not being investigated so much. Many current underwater communication systems are based on acoustic or optical techniques. The use of electromagnetic (EM) waves in this medium, even in short distances, increases the bandwidth, which definitely implies a great advantage for video delivery. Related literature shows that the speed propagation and absorption coefficient in freshwater are independent of the working frequency of the transmitted signals. No work shows any temperature dependence with the electromagnetic waves propagation. In this paper, we study the EM wave's behavior when we vary the temperature at 2.4 GHz in underwater freshwater environments. We are going to study the signal behavior in this medium in order to deliver video images from the marine fish cages with the purpose of monitoring the fish activity. To carry out our study, we fix the water conditions and measure the maximum distance as a function of several network parameters such as the working frequency, data transfer rate, modulations and water temperature. Our results show that some combinations of temperature and working frequency generate better results than others. Finally, we will compare our results with the statements extracted from other works. es_ES
dc.description.sponsorship This work has been partially supported by the "Ministerio de Ciencia e Innovacion", through the "Plan Nacional de I+D+i 2008-2011" in the "Subprograma de Proyectos de Investigacion Fundamental" (Project TEC2011-27516), by the postdoctoral Grant "contratacion de doctores para el acceso al sistema espanol de ciencia, tecnologia e innovacion, en estructuras de Investigacion de la UPV (PAID-10-14)" by the "Universitat Politecnica de Valencia" and by the "Programa para la Formacion de Personal Investigador-(FPI-2015-S2-884)" by the "Universitat Politecnica de Valencia". es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Wireless Personal Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Video delivery es_ES
dc.subject 2.4 GHz es_ES
dc.subject Underwater radio propagation es_ES
dc.subject Electromagnetic waves es_ES
dc.subject Temperature effects es_ES
dc.subject Freshwater es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Underwater Ad Hoc Wireless Communication for Video Delivery es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11277-016-3732-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-14/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-27516/ES/RED COGNITIVA BASADA EN GRUPOS DE SENSORES COLABORATIVOS PARA EL SENSADO Y MONITOZACION DEL ENTORNO ACUATICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F06837/ES/FPU15%2F06837/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Sendra, S.; Lloret, J.; Jimenez, JM.; Ghafoor, KZ. (2017). Underwater Ad Hoc Wireless Communication for Video Delivery. Wireless Personal Communications. 96(4):5123-5144. https://doi.org/10.1007/s11277-016-3732-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11277-016-3732-8 es_ES
dc.description.upvformatpinicio 5123 es_ES
dc.description.upvformatpfin 5144 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 96 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\376346 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Lloret, J. (2013). Underwater sensor nodes and networks. Sensors, 13(9), 11782–11796. es_ES
dc.description.references Poncela, J., Aguayo, M. C., & Otero, P. (2012). Wireless underwater communications. Wireless Personal Communications, 64(3), 547–560. es_ES
dc.description.references Men, Shaoyang, Chargé, Pascal, & Pillement, Sébastien. (2015). A robust and energy efficient cooperative spectrum sensing scheme in cognitive wireless sensor networks. Network Protocols and Algorithms, 7(3), 140–156. es_ES
dc.description.references Garcia, M., Sendra, S., Atenas, M., & Lloret, J. (2011). Underwater wireless ad hoc networks: A survey, book: Mobile ad hoc networks: Current status and future trends (pp. 379–411). Boca Raton: CRC Press. es_ES
dc.description.references Sendra, S., Lloret, J., García, M., & Toledo, J. F. (2011). Power saving and energy optimization techniques for wireless sensor neworks. Journal of communications, 6(6), 439–459. es_ES
dc.description.references Smart, J. H. (2005). Underwater optical communications systems part 1: Variability of water optical parameters. In Military communications conference, (MILCOM 2005) Atlantic City, New Jersey (pp. 1140–1146). October 17–20, 2005. es_ES
dc.description.references Lloret, J., Sendra, S., Ardid, M., & Rodrigues, J. J. (2012). Underwater wireless sensor communications in the 2.4 GHz ISM frequency band. Sensors, 12(4), 4237–4264. es_ES
dc.description.references Akyildiz, I. F., Pompili, D., & Melodia, T. (2004). Challenges for efficient communication in underwater acoustic sensor networks. ACM Sigbed Review, 1(2), 3–8. es_ES
dc.description.references Che, X., Wells, I., Dickers, G., Kear, P., & Gong, X. (2010). Re-evaluation of RF electromagnetic communication in underwater sensor networks. IEEE Communications Magazine, 48(12), 143–151. es_ES
dc.description.references Chakraborty, U., Tewary, T., & Chatterjee, R. P. (2009). Exploiting the loss-frequency relationship using RF communication in underwater communication networks, In The 4th international conference on computers and devices for communication, (CODEC 2009) Kolkata, India, December 14–16, 2009. es_ES
dc.description.references Balanis, C. A. (1989). Advanced engineering electromagnetics. New York, NY: Wiley. es_ES
dc.description.references Somaraju, R., & Trumpf, J. (2006). Frequency, temperature and salinity variation of the permittivity of seawater. IEEE Transactions on Antennas and Propagation, 54(11), 3441–3448. es_ES
dc.description.references Zahedi, Y. K., Ghafghazi, H., Ariffin, S. H. S., and Kassim, N. M. (2011). Feasibility of electromagnetic communication in underwater wireless sensor networks. In Informatics engineering and information science (pp. 614–623). Berlin: Springer. es_ES
dc.description.references McEachen, J. C., & Casias, J. (2008). Performance of a wireless unattended sensor network in a freshwater environment. In Proceedings of the IEEE 41st annual Hawaii international conference on system sciences 2008, Waikoloa, Big Island, Hawaii (pp. 496–496). January 7–10, 2008. es_ES
dc.description.references Sendra, S., Lamparero, J. V., Lloret, J.,& Ardid, M. (2012). Study of the optimum frequency at 2.4 GHz ISM band for underwater wireless ad hoc communications. In Ad hoc, mobile, and wireless networks, (Vol. 7363, pp. 260–273). Berlin: Springer. es_ES
dc.description.references Sendra, S., Lamparero, J. V., Lloret, J., & Ardid, M. (2011).Underwater communications in wireless sensor networks using WLAN at 2.4 Ghz. In The 8th IEEE international conference on mobile ad hoc and sensor systems (IEEE MASS 2011), Valencia (Spain) October 17–22, 2011. es_ES
dc.description.references Atenas, M., Sendra, S., Garcia, M., & Lloret, J., (2010), IPTV performance in IEEE 802.11n WLANs. In Proceedings of the IEEE global communications conference (IEEE Globecom 2010), Miami (USA) (pp. 929–933). December 6–10, 2010. es_ES
dc.description.references Jimenez, J. M., Diaz, J. R., Sendra, S., & Lloret, J. (2014). Choosing the best video compression codec depending on the recorded environment. In Globecom 2014—communications software, services and multimedia symposium, Austin, Texas (USA), December 8–12, 2014. es_ES
dc.description.references Partan, J., Kurose, J., & Levine, B. N. (2007). A survey of practical issues in underwater networks. ACM SIGMOBILE Mobile Computing and Communications Review, 11(4), 23–33. es_ES
dc.description.references Jiang, S., & Georgakopoulos, S. (2011). Electromagnetic wave propagation into fresh water. Journal of Electromagnetic Analysis and Applications, 3(07), 261. es_ES
dc.description.references Abdou, A. A., Shaw, A., Mason, A., Al-Shamma’a, A., Cullen, J., & Wylie, S. (2011). Electromagnetic (EM) wave propagation for the development of an underwater wireless sensor network (WSN). In IEEE sensors Limerick, Ireland October 28–31, 2011. es_ES
dc.description.references Wang Z., Zeitoun A., & Jamin S., (2003). Challenges and lessons learned in measuring path RTT for proximity-based applications. In Proceedings of the 6th workshop on passive and active measurement 2003 San Diego, CA, USA. es_ES
dc.description.references Chaitanya, D. E., Sridevi, C. V., & Rao, G. S. B. (2011). Path loss analysis of underwater communication systems, IEEE Students’ technology symposium (TechSym 2011) Kharagpur, India, January 14–16, 2011. es_ES
dc.description.references Kim, B. C., & Lu, I. T. (2000). Parameter study of OFDM underwater communications system. In OCEANS 2000 MTS/IEEE conference and exhibition providence, Rhode Island–The Ocean State, September 11–14, 2000. es_ES
dc.description.references Wells, I., Davies, A., Che, X., Kear, P., Dickers, G., Gong, X., & Rhodes, M. (2009). Node pattern simulation of an undersea sensor network using RF electromagnetic communications. In Ultra modern telecommunications & workshops, St. Petersburg, Russia, October 12–14, 2009. es_ES
dc.description.references Al-Shamma’a, A., Shaw, A., & Saman, S. (2004). Propagation of electromagnetic waves at MHz frequencies through seawater. Transactions on IEEE Antennas and Propagation, 52(11), 2843–2849. es_ES
dc.description.references Shaw, A., Wylie, S. R., & Toal, D. (2006). Experimental investigations of electromagnetic wave propagation in seawater. In 36th European microwave conference, Manchester, UK (pp. 572–575). September 10–15, 2006. es_ES
dc.description.references Cella, U. M., Johnstone, R., & Shuley, N. (2009). Electromagnetic wave wireless communication in shallow water coastal environment: Theoretical analysis and experimental results. In Proceedings of the fourth ACM international workshop on underwater networks Berkeley, California, USA. November 3, 2009. es_ES
dc.description.references Sendra, S., Lloret, J., Rodrigues, J. J., & Aguiar, J. M. (2013). Underwater wireless communications in freshwater at 2.4 GHz. IEEE Communications Letters, 17(9), 1794–1797. es_ES
dc.description.references Eureqa Formulize web site. (2012). http://formulize.nutonian.com (Last Access: November 28, 2015). es_ES
dc.description.references Lloret, J., Garcia, M., Sendra, S., & Lloret, G. (2014). An underwater wireless group-based sensor network for marine fish farms sustainability monitoring. Telecommunication Systems, 60(1), 67–84. es_ES
dc.description.references Garcia, M., Sendra, S., Lloret, G., & Lloret, J. (2011). Monitoring and control sensor system for fish feeding in marine fish farms. IET Communications, 5(12), 1682–1690. es_ES
dc.description.references Heidemann, J., Ye, W., Wills, J., Syed, A., & Li, Y. (2006). Research challenges and applications for underwater sensor networking. In IEEE wireless communications and networking conference (WCNC 2006), Las Vegas, NV USA (pp. 228–235). April 3–6, 2006. es_ES
dc.description.references Liu, L., Zhou, S., & Cui, J. H. (2008). Prospects and problems of wireless communication for underwater sensor networks. Wireless Communications and Mobile Computing, 8(8), 977–994. es_ES
dc.description.references Parra, L., Sendra, S., Vincent-Vela, M. C., Garcia-Gabaldón, M., & Lloret, J. (2015). Improving the signal propagation at 2.4 GHz using conductive membranes. IEEE Systems Journal. doi: 10.1109/JSYST.2015.2496204 . es_ES
dc.description.references Lloret, J., Sendra, S., Garcia, M., Lloret, G., Group-based underwater wireless sensor network for marine fish farms, In Proceedings of the 2011 IEEE GLOBECOM workshops Houston, Texas, USA (pp. 115–119). December 5–9, 2011. es_ES
dc.description.references Lombardo, A., Panarello, C., & Schembra, G. (2013). EE-ARQ: A Green ARQ-based algorithm for the transmission of video streams on noise wireless channels. Network Protocols and Algorithms, 5(1), 41–70. es_ES
dc.description.references He, D., Zhang, Y., & Chen, J. (2014). Cryptanalysis and improvement of an anonymous authentication protocol for wireless access networks. Wireless Personal Communications, 74(2), 229–243. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem