- -

Siamese hierarchical attention networks for extractive summarization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Siamese hierarchical attention networks for extractive summarization

Mostrar el registro completo del ítem

González-Barba, JÁ.; Segarra Soriano, E.; García-Granada, F.; Sanchís Arnal, E.; Hurtado Oliver, LF. (2019). Siamese hierarchical attention networks for extractive summarization. Journal of Intelligent & Fuzzy Systems. 36(5):4599-4607. https://doi.org/10.3233/JIFS-179011

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/139459

Ficheros en el ítem

Metadatos del ítem

Título: Siamese hierarchical attention networks for extractive summarization
Autor: González-Barba, José Ángel Segarra Soriano, Encarnación García-Granada, Fernando Sanchís Arnal, Emilio Hurtado Oliver, Lluis Felip
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] In this paper, we present an extractive approach to document summarization based on Siamese Neural Networks. Specifically, we propose the use of Hierarchical Attention Networks to select the most relevant sentences ...[+]
Palabras clave: Siamese neural networks , Hierarchical attention networks , Automatic text summarization
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Intelligent & Fuzzy Systems. (issn: 1064-1246 )
DOI: 10.3233/JIFS-179011
Editorial:
IOS Press
Versión del editor: https://doi.org/10.3233/JIFS-179011
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-01-17/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-85854-C4-2-R/ES/AMIC-UPV: ANALISIS AFECTIVO DE INFORMACION MULTIMEDIA CON COMUNICACION INCLUSIVA Y NATURAL/
Agradecimientos:
This work has been partially supported by the Spanish MINECO and FEDER founds under project AMIC (TIN2017-85854-C4-2-R). Work of Jose-Angel Gonzalez is also financed by Universitat Politecnica de Valencia under grant PAID-01-17.[+]
Tipo: Artículo

References

N. Begum , M. Fattah , and F. Ren . Automatic text summarization using support vector machine 5(7) (2009), 1987–1996.

J. Cheng and M. Lapata . Neural summarization by extracting sentences and words. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers, 2016.

K.M. Hermann , T. Kocisky , E. Grefenstette , L. Espeholt , W. Kay , M. Suleyman , and P. Blunsom . Teaching machines to read and comprehend, CoRR, abs/1506.03340, 2015. [+]
N. Begum , M. Fattah , and F. Ren . Automatic text summarization using support vector machine 5(7) (2009), 1987–1996.

J. Cheng and M. Lapata . Neural summarization by extracting sentences and words. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers, 2016.

K.M. Hermann , T. Kocisky , E. Grefenstette , L. Espeholt , W. Kay , M. Suleyman , and P. Blunsom . Teaching machines to read and comprehend, CoRR, abs/1506.03340, 2015.

D.P. Kingma and J. Ba . Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.

Lloret, E., & Palomar, M. (2011). Text summarisation in progress: a literature review. Artificial Intelligence Review, 37(1), 1-41. doi:10.1007/s10462-011-9216-z

Louis, A., & Nenkova, A. (2013). Automatically Assessing Machine Summary Content Without a Gold Standard. Computational Linguistics, 39(2), 267-300. doi:10.1162/coli_a_00123

Miao, Y., & Blunsom, P. (2016). Language as a Latent Variable: Discrete Generative Models for Sentence Compression. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. doi:10.18653/v1/d16-1031

R. Mihalcea and P. Tarau . Textrank: Bringing order into text. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, 2004.

T. Mikolov , K. Chen , G. S. Corrado , and J. Dean . Efficient estimation of word representations in vector space, CoRR, abs/1301.3781, 2013.

Minaee, S., & Liu, Z. (2017). Automatic question-answering using a deep similarity neural network. 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP). doi:10.1109/globalsip.2017.8309095

R. Paulus , C. Xiong , and R. Socher , A deep reinforced model for abstractive summarization. CoRR, abs/1705.04304, 2017.

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681. doi:10.1109/78.650093

See, A., Liu, P. J., & Manning, C. D. (2017). Get To The Point: Summarization with Pointer-Generator Networks. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). doi:10.18653/v1/p17-1099

Takase, S., Suzuki, J., Okazaki, N., Hirao, T., & Nagata, M. (2016). Neural Headline Generation on Abstract Meaning Representation. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. doi:10.18653/v1/d16-1112

G. Tur and R. De Mori . Spoken language understanding: Systems for extracting semantic information from speech, John Wiley & Sons, 2011.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem