- -

Uncertainty quantification for nonlinear difference equations with dependent random inputs via a stochastic Galerkin projection technique

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Uncertainty quantification for nonlinear difference equations with dependent random inputs via a stochastic Galerkin projection technique

Show simple item record

Files in this item

dc.contributor.author Calatayud-Gregori, Julia es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Jornet-Sanz, Marc es_ES
dc.date.accessioned 2020-03-26T06:39:37Z
dc.date.available 2020-03-26T06:39:37Z
dc.date.issued 2019-06-30 es_ES
dc.identifier.issn 1007-5704 es_ES
dc.identifier.uri http://hdl.handle.net/10251/139463
dc.description.abstract [EN] Discrete stochastic systems model discrete response data on some phenomenon with inherent uncertainty. The main goal of uncertainty quantification is to derive the probabilistic features of the stochastic system. This paper deals with theoretical and computational aspects of uncertainty quantification for nonlinear difference equations with dependent random inputs. When the random inputs are independent random variables, a generalized Polynomial Chaos (gPC) approach has been usually used to computationally quantify the uncertainty of stochastic systems. In the gPC technique, the stochastic Galerkin projections are done onto linear spans of orthogonal polynomials from the Askey-Wiener scheme or from Gram-Schmidt orthonormalization procedures. In this regard, recent results have established the algebraic or exponential convergence of these Galerkin projections to the solution process. In this paper, as the random inputs of the difference equation may be dependent, we perform Galerkin projections directly onto linear spans of canonical polynomials. The main contribution of this paper is to study the spectral convergence of these Galerkin projections for the solution process of general random difference equations. Spectral convergence is important to derive the main statistics of the response process at a cheap computational expense. In this regard, the numerical experiments bring to light the theoretical discussion of the paper. es_ES
dc.description.sponsorship This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM2017-89664-P. The co-author Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Communications in Nonlinear Science and Numerical Simulation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear random difference equation es_ES
dc.subject Stochastic Galerkin projection technique es_ES
dc.subject Uncertainty quantification es_ES
dc.subject Dependent random inputs es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Uncertainty quantification for nonlinear difference equations with dependent random inputs via a stochastic Galerkin projection technique es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cnsns.2018.12.011 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2019). Uncertainty quantification for nonlinear difference equations with dependent random inputs via a stochastic Galerkin projection technique. Communications in Nonlinear Science and Numerical Simulation. 72:108-120. https://doi.org/10.1016/j.cnsns.2018.12.011 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cnsns.2018.12.011 es_ES
dc.description.upvformatpinicio 108 es_ES
dc.description.upvformatpfin 120 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 72 es_ES
dc.relation.pasarela S\374254 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


This item appears in the following Collection(s)

Show simple item record