- -

Setting decision thresholds when operating conditions are uncertain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Setting decision thresholds when operating conditions are uncertain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ferri Ramírez, César es_ES
dc.contributor.author Hernández-Orallo, José es_ES
dc.contributor.author Flach, Peter es_ES
dc.date.accessioned 2020-03-26T06:39:43Z
dc.date.available 2020-03-26T06:39:43Z
dc.date.issued 2019-07 es_ES
dc.identifier.issn 1384-5810 es_ES
dc.identifier.uri http://hdl.handle.net/10251/139465
dc.description.abstract [EN] The quality of the decisions made by a machine learning model depends on the data and the operating conditions during deployment. Often, operating conditions such as class distribution and misclassification costs have changed during the time since the model was trained and evaluated. When deploying a binary classifier that outputs scores, once we know the new class distribution and the new cost ratio between false positives and false negatives, there are several methods in the literature to help us choose an appropriate threshold for the classifier's scores. However, on many occasions, the information that we have about this operating condition is uncertain. Previous work has considered ranges or distributions of operating conditions during deployment, with expected costs being calculated for ranges or intervals, but still the decision for each point is made as if the operating condition were certain. The implications of this assumption have received limited attention: a threshold choice that is best suited without uncertainty may be suboptimal under uncertainty. In this paper we analyse the effect of operating condition uncertainty on the expected loss for different threshold choice methods, both theoretically and experimentally. We model uncertainty as a second conditional distribution over the actual operation condition and study it theoretically in such a way that minimum and maximum uncertainty are both seen as special cases of this general formulation. This is complemented by a thorough experimental analysis investigating how different learning algorithms behave for a range of datasets according to the threshold choice method and the uncertainty level. es_ES
dc.description.sponsorship We thank the anonymous reviewers for their comments, which have helped to improve this paper significantly. This work has been partially supported by the EU (FEDER) and the Spanish MINECO under Grant TIN 2015-69175-C4-1-R and by Generalitat Valenciana under Grant PROMETEOII/2015/013. Jose Hernandez-Orallo was supported by a Salvador de Madariaga Grant (PRX17/00467) from the Spanish MECD for a research stay at the Leverhulme Centre for the Future of Intelligence (CFI), Cambridge, a BEST Grant (BEST/2017/045) from Generalitat Valenciana for another research stay also at the CFI and an FLI Grant RFP2-152. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Data Mining and Knowledge Discovery es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Classification es_ES
dc.subject Threshold choice methods es_ES
dc.subject Uncertainty es_ES
dc.subject Operating condition es_ES
dc.subject Calibration es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Setting decision thresholds when operating conditions are uncertain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10618-019-00613-7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//PRX17%2F00467/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//BEST%2F2017%2F045/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FLI//RFP2-152/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2015%2F013/ES/SmartLogic: Logic Technologies for Software Security and Performance/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2015-69175-C4-1-R/ES/SOLUCIONES EFECTIVAS BASADAS EN LA LOGICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Ferri Ramírez, C.; Hernández-Orallo, J.; Flach, P. (2019). Setting decision thresholds when operating conditions are uncertain. Data Mining and Knowledge Discovery. 33(4):805-847. https://doi.org/10.1007/s10618-019-00613-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10618-019-00613-7 es_ES
dc.description.upvformatpinicio 805 es_ES
dc.description.upvformatpfin 847 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\397858 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Future of Life Institute es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Adams N, Hand D (1999) Comparing classifiers when the misallocation costs are uncertain. Pattern Recognit 32(7):1139–1147 es_ES
dc.description.references Bella A, Ferri C, Hernández-Orallo J, Ramírez-Quintana MJ (2013) On the effect of calibration in classifier combination. Appl Intell 38(4):566–585 es_ES
dc.description.references Bishop C (2011) Embracing uncertainty: applied machine learning comes of age. In: Machine learning and knowledge discovery in databases. Springer, Berlin, pp 4 es_ES
dc.description.references Brier GW (1950) Verification of forecasts expressed in terms of probability. Monthly Weather Rev 78(1):1–3 es_ES
dc.description.references Dalton LA (2016) Optimal ROC-based classification and performance analysis under Bayesian uncertainty models. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 13(4):719–729 es_ES
dc.description.references de Melo C, Eduardo C, Bastos Cavalcante Prudencio R (2014) Cost-sensitive measures of algorithm similarity for meta-learning. In: 2014 Brazilian conference on intelligent systems (BRACIS). IEEE, pp 7–12 es_ES
dc.description.references Dou H, Yang X, Song X, Yu H, Wu WZ, Yang J (2016) Decision-theoretic rough set: a multicost strategy. Knowl-Based Syst 91:71–83 es_ES
dc.description.references Drummond C, Holte RC (2000) Explicitly representing expected cost: an alternative to roc representation. In: Proceedings of the sixth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, NY, USA, KDD ’00, pp 198–207 es_ES
dc.description.references Drummond C, Holte RC (2006) Cost curves: an improved method for visualizing classifier performance. Mach Learn 65(1):95–130 es_ES
dc.description.references Elkan C (2001) The foundations of cost-sensitive learning. In: Proceedings of the 17th international joint conference on artificial intelligence, vol 2. Morgan Kaufmann Publishers Inc., IJCAI’01, pp 973–978 es_ES
dc.description.references Fawcett T (2003) In vivo spam filtering: a challenge problem for KDD. ACM SIGKDD Explor. Newsl. 5(2):140–148 es_ES
dc.description.references Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874 es_ES
dc.description.references Fawcett T, Niculescu-Mizil A (2007) PAV and the ROC convex hull. Mach Learn 68(1):97–106 es_ES
dc.description.references Ferri C, Flach PA, Hernández-Orallo J (2017) R code for threshold choice methods with context uncertainty. https://github.com/ceferra/ThresholdChoiceMethods/tree/master/Uncertainty es_ES
dc.description.references Flach P (2004) The many faces of ROC analysis in machine learning. In: Proceedings of the twenty-first international conference on tutorial, machine learning (ICML 2004) es_ES
dc.description.references Flach P (2014) Classification in context: adapting to changes in class and cost distribution. In: First international workshop on learning over multiple contexts at European conference on machine learning and principles and practice of knowledge discovery in databases ECML-PKDD’2014 es_ES
dc.description.references Flach P, Matsubara ET (2007) A simple lexicographic ranker and probability estimator. In: 18th European conference on machine learning, ECML2007. Springer, pp 575–582 es_ES
dc.description.references Flach P, Hernández-Orallo J, Ferri C (2011) A coherent interpretation of AUC as a measure of aggregated classification performance. In: Proceedings of the 28th international conference on machine learning, ICML2011 es_ES
dc.description.references Guzella TS, Caminhas WM (2009) A review of machine learning approaches to spam filtering. Expert Syst Appl 36(7):10206–10222 es_ES
dc.description.references Hand D (2009) Measuring classifier performance: a coherent alternative to the area under the ROC curve. Mach Learn 77(1):103–123 es_ES
dc.description.references Hernández-Orallo J, Flach P, Ferri C (2011) Brier curves: a new cost-based visualisation of classifier performance. In: Proceedings of the 28th international conference on machine learning, ICML2011 es_ES
dc.description.references Hernández-Orallo J, Flach P, Ferri C (2012) A unified view of performance metrics: translating threshold choice into expected classification loss. J Mach Learn Res 13(1):2813–2869 es_ES
dc.description.references Hernández-Orallo J, Flach P, Ferri C (2013) ROC curves in cost space. Mach Learn 93(1):71–91 es_ES
dc.description.references Hornik K, Buchta C, Zeileis A (2009) Open-source machine learning: R meets Weka. Comput Stat 24(2):225–232 es_ES
dc.description.references Huang Y (2015) Dynamic cost-sensitive naive bayes classification for uncertain data. Int J Database Theory Appl 8(1):271–280 es_ES
dc.description.references Johnson RA, Raeder T, Chawla NV (2015) Optimizing classifiers for hypothetical scenarios. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, Berlin, pp 264–276 es_ES
dc.description.references Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml es_ES
dc.description.references Liu M, Zhang Y, Zhang X, Wang Y (2011) Cost-sensitive decision tree for uncertain data. In: Advanced data mining and applications. Springer, Berlin, pp 243–255 es_ES
dc.description.references Liu XY, Zhou ZH (2010) Learning with cost intervals. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 403–412 es_ES
dc.description.references Provost F, Fawcett T (2001) Robust classification for imprecise environments. Mach Learn 42(3):203–231 es_ES
dc.description.references Provost FJ, Fawcett T et al (1997) Analysis and visualization of classifier performance: comparison under imprecise class and cost distributions. KDD 97:43–48 es_ES
dc.description.references Qin B, Xia Y, Li F (2009) DTU: a decision tree for uncertain data. In: Advances in knowledge discovery and data mining. Springer, Berlin, pp 4–15 es_ES
dc.description.references Ren J, Lee SD, Chen X, Kao B, Cheng R, Cheung D (2009) Naive Bayes classification of uncertain data. In: Ninth IEEE international conference on data mining, 2009. ICDM’09. IEEE, pp 944–949 es_ES
dc.description.references Ridzuan F, Potdar V, Talevski A (2010) Factors involved in estimating cost of email spam. In: Taniar D, Gervasi O, Murgante B, Pardede E, Apduhan BO (eds) Computational science and its applications—ICCSA 2010. Springer, Berlin, pp 383–399 es_ES
dc.description.references Sakkis G, Androutsopoulos I, Paliouras G, Karkaletsis V, Spyropoulos CD, Stamatopoulos P (2003) A memory-based approach to anti-spam filtering for mailing lists. Inf Retr 6(1):49–73 es_ES
dc.description.references Tsang S, Kao B, Yip KY, Ho WS, Lee SD (2011) Decision trees for uncertain data. IEEE Trans Knowl Data Eng 23(1):64–78 es_ES
dc.description.references Wang R, Tang K (2012) Minimax classifier for uncertain costs. arXiv preprint arXiv:1205.0406 es_ES
dc.description.references Zadrozny B, Elkan C (2001a) Learning and making decisions when costs and probabilities are both unknown. In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 204–213 es_ES
dc.description.references Zadrozny B, Elkan C (2001b) Obtaining calibrated probability estimates from decision trees and Naive Bayesian classifiers. In: Proceedings of the eighteenth international conference on machine learning (ICML 2001), pp 609–616 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem