- -

Summarization of Spanish Talk Shows with Siamese Hierarchical Attention Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Summarization of Spanish Talk Shows with Siamese Hierarchical Attention Networks

Mostrar el registro completo del ítem

González-Barba, JÁ.; Hurtado Oliver, LF.; Segarra Soriano, E.; García-Granada, F.; Sanchís Arnal, E. (2019). Summarization of Spanish Talk Shows with Siamese Hierarchical Attention Networks. Applied Sciences. 9(18):1-13. https://doi.org/10.3390/app9183836

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/139656

Ficheros en el ítem

Metadatos del ítem

Título: Summarization of Spanish Talk Shows with Siamese Hierarchical Attention Networks
Autor: González-Barba, José Ángel Hurtado Oliver, Lluis Felip Segarra Soriano, Encarnación García-Granada, Fernando Sanchís Arnal, Emilio
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] In this paper, we present an approach to Spanish talk shows summarization. Our approach is based on the use of Siamese Neural Networks on the transcription of the show audios. Specifically, we propose to use Hierarchical ...[+]
Palabras clave: Siamese hierarchical attention neural networks , Extractive summarization , Spanish talk shows summarization
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app9183836
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/app9183836
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-01-17/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-85854-C4-2-R/ES/AMIC-UPV: ANALISIS AFECTIVO DE INFORMACION MULTIMEDIA CON COMUNICACION INCLUSIVA Y NATURAL/
Agradecimientos:
This work has been partially supported by the Spanish MINECO and FEDER founds under project AMIC (TIN2017-85854-C4-2-R). Work of Jose-Angel Gonzalez is financed by Universitat Politecnica de Valencia under grant PAID-01-17.[+]
Tipo: Artículo

References

Carbonell, J., & Goldstein, J. (1998). The use of MMR, diversity-based reranking for reordering documents and producing summaries. Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval - SIGIR ’98. doi:10.1145/290941.291025

Erkan, G., & Radev, D. R. (2004). LexRank: Graph-based Lexical Centrality as Salience in Text Summarization. Journal of Artificial Intelligence Research, 22, 457-479. doi:10.1613/jair.1523

Lloret, E., & Palomar, M. (2011). Text summarisation in progress: a literature review. Artificial Intelligence Review, 37(1), 1-41. doi:10.1007/s10462-011-9216-z [+]
Carbonell, J., & Goldstein, J. (1998). The use of MMR, diversity-based reranking for reordering documents and producing summaries. Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval - SIGIR ’98. doi:10.1145/290941.291025

Erkan, G., & Radev, D. R. (2004). LexRank: Graph-based Lexical Centrality as Salience in Text Summarization. Journal of Artificial Intelligence Research, 22, 457-479. doi:10.1613/jair.1523

Lloret, E., & Palomar, M. (2011). Text summarisation in progress: a literature review. Artificial Intelligence Review, 37(1), 1-41. doi:10.1007/s10462-011-9216-z

See, A., Liu, P. J., & Manning, C. D. (2017). Get To The Point: Summarization with Pointer-Generator Networks. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). doi:10.18653/v1/p17-1099

Narayan, S., Cohen, S. B., & Lapata, M. (2018). Ranking Sentences for Extractive Summarization with Reinforcement Learning. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). doi:10.18653/v1/n18-1158

González, J.-Á., Segarra, E., García-Granada, F., Sanchis, E., & Hurtado, L.-F. (2019). Siamese hierarchical attention networks for extractive summarization. Journal of Intelligent & Fuzzy Systems, 36(5), 4599-4607. doi:10.3233/jifs-179011

Furui, S., Kikuchi, T., Shinnaka, Y., & Hori, C. (2004). Speech-to-Text and Speech-to-Speech Summarization of Spontaneous Speech. IEEE Transactions on Speech and Audio Processing, 12(4), 401-408. doi:10.1109/tsa.2004.828699

Shih-Hung Liu, Kuan-Yu Chen, Chen, B., Hsin-Min Wang, Hsu-Chun Yen, & Wen-Lian Hsu. (2015). Combining Relevance Language Modeling and Clarity Measure for Extractive Speech Summarization. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(6), 957-969. doi:10.1109/taslp.2015.2414820

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical Attention Networks for Document Classification. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. doi:10.18653/v1/n16-1174

Conneau, A., Kiela, D., Schwenk, H., Barrault, L., & Bordes, A. (2017). Supervised Learning of Universal Sentence Representations from Natural Language Inference Data. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. doi:10.18653/v1/d17-1070

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391-407. doi:10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem