Carbonell, J., & Goldstein, J. (1998). The use of MMR, diversity-based reranking for reordering documents and producing summaries. Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval - SIGIR ’98. doi:10.1145/290941.291025
Erkan, G., & Radev, D. R. (2004). LexRank: Graph-based Lexical Centrality as Salience in Text Summarization. Journal of Artificial Intelligence Research, 22, 457-479. doi:10.1613/jair.1523
Lloret, E., & Palomar, M. (2011). Text summarisation in progress: a literature review. Artificial Intelligence Review, 37(1), 1-41. doi:10.1007/s10462-011-9216-z
[+]
Carbonell, J., & Goldstein, J. (1998). The use of MMR, diversity-based reranking for reordering documents and producing summaries. Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval - SIGIR ’98. doi:10.1145/290941.291025
Erkan, G., & Radev, D. R. (2004). LexRank: Graph-based Lexical Centrality as Salience in Text Summarization. Journal of Artificial Intelligence Research, 22, 457-479. doi:10.1613/jair.1523
Lloret, E., & Palomar, M. (2011). Text summarisation in progress: a literature review. Artificial Intelligence Review, 37(1), 1-41. doi:10.1007/s10462-011-9216-z
See, A., Liu, P. J., & Manning, C. D. (2017). Get To The Point: Summarization with Pointer-Generator Networks. Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). doi:10.18653/v1/p17-1099
Narayan, S., Cohen, S. B., & Lapata, M. (2018). Ranking Sentences for Extractive Summarization with Reinforcement Learning. Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). doi:10.18653/v1/n18-1158
González, J.-Á., Segarra, E., García-Granada, F., Sanchis, E., & Hurtado, L.-F. (2019). Siamese hierarchical attention networks for extractive summarization. Journal of Intelligent & Fuzzy Systems, 36(5), 4599-4607. doi:10.3233/jifs-179011
Furui, S., Kikuchi, T., Shinnaka, Y., & Hori, C. (2004). Speech-to-Text and Speech-to-Speech Summarization of Spontaneous Speech. IEEE Transactions on Speech and Audio Processing, 12(4), 401-408. doi:10.1109/tsa.2004.828699
Shih-Hung Liu, Kuan-Yu Chen, Chen, B., Hsin-Min Wang, Hsu-Chun Yen, & Wen-Lian Hsu. (2015). Combining Relevance Language Modeling and Clarity Measure for Extractive Speech Summarization. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(6), 957-969. doi:10.1109/taslp.2015.2414820
Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical Attention Networks for Document Classification. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. doi:10.18653/v1/n16-1174
Conneau, A., Kiela, D., Schwenk, H., Barrault, L., & Bordes, A. (2017). Supervised Learning of Universal Sentence Representations from
Natural Language Inference Data. Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing. doi:10.18653/v1/d17-1070
Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391-407. doi:10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9
[-]