- -

Choosing the right loss function for multi-label Emotion Classification

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Choosing the right loss function for multi-label Emotion Classification

Mostrar el registro completo del ítem

Hurtado Oliver, LF.; González-Barba, JÁ.; Pla Santamaría, F. (2019). Choosing the right loss function for multi-label Emotion Classification. Journal of Intelligent & Fuzzy Systems. 36(5):4697-4708. https://doi.org/10.3233/JIFS-179019

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/139663

Ficheros en el ítem

Metadatos del ítem

Título: Choosing the right loss function for multi-label Emotion Classification
Autor: Hurtado Oliver, Lluis Felip González-Barba, José Ángel Pla Santamaría, Ferran
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Natural Language Processing problems has recently been benefited for the advances in Deep Learning. Many of these problems can be addressed as a multi-label classification problem. Usually, the metrics used to evaluate ...[+]
Palabras clave: Deep Learning , Loss function , Multi-label classification , Natural Language Processing , Emotion Classification
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Intelligent & Fuzzy Systems. (issn: 1064-1246 )
DOI: 10.3233/JIFS-179019
Editorial:
IOS Press
Versión del editor: https://doi.org/10.3233/JIFS-179019
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-01-17/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-85854-C4-2-R/ES/AMIC-UPV: ANALISIS AFECTIVO DE INFORMACION MULTIMEDIA CON COMUNICACION INCLUSIVA Y NATURAL/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F176/ES/GISPRO-GENOMIC INFORMATION SYSTEMS PRODUCTION/
Agradecimientos:
This work has been partially supported by the Spanish MINECO and FEDER founds under project AMIC (TIN2017-85854-C4-2-R) and the GiSPRO project (PROMETEU/2018/176). Work of Jose-Angel Gonzalez is also financed by Universitat ...[+]
Tipo: Artículo

References

Baccianella S. , Esuli A. and Sebastiani F. , Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining, In in Proc of LREC, 2010.

Bilmes J. , Asanovic K. , Chin C.-W. and Demmel J. , Using phipac to speed error back-propagation learning, In 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 5, 1997, pp. 4153–4156.

Cruz, F. L., Troyano, J. A., Pontes, B., & Ortega, F. J. (2014). Building layered, multilingual sentiment lexicons at synset and lemma levels. Expert Systems with Applications, 41(13), 5984-5994. doi:10.1016/j.eswa.2014.04.005 [+]
Baccianella S. , Esuli A. and Sebastiani F. , Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining, In in Proc of LREC, 2010.

Bilmes J. , Asanovic K. , Chin C.-W. and Demmel J. , Using phipac to speed error back-propagation learning, In 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 5, 1997, pp. 4153–4156.

Cruz, F. L., Troyano, J. A., Pontes, B., & Ortega, F. J. (2014). Building layered, multilingual sentiment lexicons at synset and lemma levels. Expert Systems with Applications, 41(13), 5984-5994. doi:10.1016/j.eswa.2014.04.005

Dembczynski K. , Jachnik A. , Kotlowski W. , Waegeman W. and Huellermeier E. , Optimizing the F-Measure in Multi-Label Classification: Plug-in Rule Approach versus Structured Loss Minimization, In DasguptaS. and McAllester D., editors, Proceedings of the 30th International Conference on Machine Learning volume 28 of Proceedings of Machine Learning Research, Atlanta, Georgia, USA, PMLR, 2013, pp. 1130–1138.

Goodfellow I. , Bengio Y. and Courville A. , Deep Learning, MIT Press, http://www.deeplearningbook.org (2016).

Hu M. and Liu B. , Mining and summarizing customer reviews, In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04, New York, NY, USA, ACM, 2004, pp. 168–177.

Ioffe S. and Szegedy C. , Batch normalization: Accelerating deep network training by reducing internal covariate shift, CoRR, abs/1502.03167 (2015).

Janocha K. and Czarnecki W.M. , On loss functions for deep neural networks in classification, CoRR, abs/1702.05659 (2017).

Krieger M. and Ahn D. , Tweetmotif: Exploratory search and topic summarization for twitter, In Proc of AAAI Conference on Weblogs and Social, 2010.

Liu B. , Sentiment Analysis and Opinion Mining, A Comprehensive Introduction and Survey. Morgan & Claypool Publishers, 2012.

Mikolov T. , Sutskever I. , Chen K. , Corrado G. and Dean J. , Distributed representations of words and phrases and their compositionality, CoRR, abs/1310.4546 (2013a).

Mikolov T. , Chen K. , Corrado G. and Dean J. , Efficient estimation of word representations in vector space, CoRR, abs/1301.3781, 2013b.

Mohammad S. , #emotional tweets, In *SEM 2012: The First Joint Conference on Lexical and Computational Semantics – Volume 1: Proceedings of the Main Conference and the Shared Task and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), Montréal, Canada. Association for Computational Linguistics, 2012, pp. 246–255.

Mohammad S. , Kiritchenko S. , Sobhani P. , Zhu X. and Cherry C. , Semeval-task 6: Detecting stance in tweets, In Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), 2016, pp. 31–41.

Mohammad S.M. and Bravo-Marquez F. , WASSA-shared task on emotion intensity, CoRR, abs/1708.03700, 2017.

Mohammad, S. M., & Turney, P. D. (2012). CROWDSOURCING A WORD-EMOTION ASSOCIATION LEXICON. Computational Intelligence, 29(3), 436-465. doi:10.1111/j.1467-8640.2012.00460.x

Mohammad, S. M., Sobhani, P., & Kiritchenko, S. (2017). Stance and Sentiment in Tweets. ACM Transactions on Internet Technology, 17(3), 1-23. doi:10.1145/3003433

Mohammad S.M. , Bravo-Marquez F. , Salameh M. and Kiritchenko S. , Semeval-2018 Task 1: Affect in tweets, In Proceedings of International Workshop on Semantic Evaluation (SemEval-2018), New Orleans, LA, USA, 2018.

Molina-González, M. D., Martínez-Cámara, E., Martín-Valdivia, M.-T., & Perea-Ortega, J. M. (2013). Semantic orientation for polarity classification in Spanish reviews. Expert Systems with Applications, 40(18), 7250-7257. doi:10.1016/j.eswa.2013.06.076

Nair V. and Hinton G.E. , Rectified linear units improve restricted boltzmann machines, In Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML’10, USA, 2010, pp. 807–814. Omnipress.

NielsenF.Å., AFINN, 2011.

Pastor-Pellicer J. , Zamora-Martínez F. , España Boquera S. and Castro Bleda M.J. , F-Measure as the Error Function to Train Neural Networks, In IWANN Proceedings, 2013.

Pennebaker J. , Chung C. , Ireland M. , Gonzales A. and Booth R. , The development and psychological properties of liwc2007, 2014.

Pla, F., & Hurtado, L.-F. (2016). Language identification of multilingual posts from Twitter: a case study. Knowledge and Information Systems, 51(3), 965-989. doi:10.1007/s10115-016-0997-x

Rosenthal S. , Farra N. and Nakov P. , SemEval-2017 task 4: Sentiment analysis in Twitter, In Proceedings of the 11th International Workshop on Semantic Evaluation, SemEval ’17, Vancouver, Canada, Association for Computational Linguistics, 2017.

Saralegi X. and San I. , Vicente, Elhuyar at tass 2013, In XXIX Congreso de la Sociedad Espaola de Procesamiento de Lenguaje Natural, Workshop on Sentiment Analysis at SEPLN (TASS2013), 2013, pp. 143–150.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34(1), 1-47. doi:10.1145/505282.505283

Taulé M. , Martí M. , Rangel F. , Rosso P. , Bosco C. and Patti V. , Overview of the task of Stance and Gender Detection in Tweets on Catalan Independence at IBEREVAL 2017, In Notebook Papers of 2nd SEPLN Workshop on Evaluation of Human Language Technologies for Iberian Languages (IBEREVAL), Murcia (Spain). CEUR Workshop Proceedings. CEUR-WS.org, 2017, 2017.

Wiebe J. , Wilson T. and Cardie C. , Annotating expressions of opinions and emotions in language, Language Resources and Evaluation 1(2) (2005).

Wilson T. , Wiebe J. and Hoffmann P. , Recognizing contextual polarity in phrase-level sentiment analysis, In Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, HLT ’05, Stroudsburg, PA, USA, 2005, pp. 347–354. Association for Computational Linguistics.

Zhang Y. and Wallace B. , A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification, In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2017, pp. 253–263. Asian Federation of Natural Language Processing.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem