Mostrar el registro sencillo del ítem
dc.contributor.author | Hueso, Jose L. | es_ES |
dc.contributor.author | Martínez Molada, Eulalia | es_ES |
dc.contributor.author | Teruel-Ferragud, Carles | es_ES |
dc.date.accessioned | 2020-03-30T07:21:59Z | |
dc.date.available | 2020-03-30T07:21:59Z | |
dc.date.issued | 2019-09-02 | es_ES |
dc.identifier.issn | 0020-7160 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/139766 | |
dc.description | This is an Author's Accepted Manuscript of an article published in José L. Hueso, Eulalia Martínez & Carles Teruel (2019) Multipoint efficient iterative methods and the dynamics of Ostrowski's method, International Journal of Computer Mathematics, 96:9, 1687-1701, DOI: 10.1080/00207160.2015.1080354 in the International Journal of Computer Mathematics, SEP 2 2019 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/10.1080/00207160.2015.1080354 | es_ES |
dc.description.abstract | [EN] In this work, we introduce a modification into the technique, presented in A. Cordero, J.L. Hueso, E. Martinez, and J.R. Torregrosa [Increasing the convergence order of an iterative method for nonlinear systems, Appl. Math. Lett. 25 (2012), pp. 2369-2374], that increases by two units the convergence order of an iterative method. The main idea is to compose a given iterative method of order p with a modification of Newton's method that introduces just one evaluation of the function, obtaining a new method of order p+2, avoiding the need to compute more than one derivative, so we improve the efficiency index in the scalar case. This procedure can be repeated n times, with the same approximation to the derivative, obtaining new iterative methods of order p+2n. We perform different numerical tests that confirm the theoretical results. By applying this procedure to Newton's method one obtains the well known fourth order Ostrowski's method. We finally analyse its dynamical behaviour on second and third degree real polynomials. | es_ES |
dc.description.sponsorship | This research was supported by Ministerio de Economia y Competitividad under grant PGC2018-095896-B-C22 and by the project of Generalitat Valenciana Prometeo/2016/089. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | International Journal of Computer Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nonlinear equations | es_ES |
dc.subject | Order of convergence | es_ES |
dc.subject | Iterative methods | es_ES |
dc.subject | Dynamics | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Multipoint efficient iterative methods and the dynamics of Ostrowski's method | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/00207160.2015.1080354 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Hueso, JL.; Martínez Molada, E.; Teruel-Ferragud, C. (2019). Multipoint efficient iterative methods and the dynamics of Ostrowski's method. International Journal of Computer Mathematics. 96(9):1687-1701. https://doi.org/10.1080/00207160.2015.1080354 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/00207160.2015.1080354 | es_ES |
dc.description.upvformatpinicio | 1687 | es_ES |
dc.description.upvformatpfin | 1701 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 96 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.pasarela | S\394073 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Amat, S., Busquier, S., & Plaza, S. (2010). Chaotic dynamics of a third-order Newton-type method. Journal of Mathematical Analysis and Applications, 366(1), 24-32. doi:10.1016/j.jmaa.2010.01.047 | es_ES |
dc.description.references | Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062 | es_ES |
dc.description.references | Cordero, A., Martínez, E., & Torregrosa, J. R. (2009). Iterative methods of order four and five for systems of nonlinear equations. Journal of Computational and Applied Mathematics, 231(2), 541-551. doi:10.1016/j.cam.2009.04.015 | es_ES |
dc.description.references | Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2012). Increasing the convergence order of an iterative method for nonlinear systems. Applied Mathematics Letters, 25(12), 2369-2374. doi:10.1016/j.aml.2012.07.005 | es_ES |
dc.description.references | Jarratt, P. (1966). Some fourth order multipoint iterative methods for solving equations. Mathematics of Computation, 20(95), 434-434. doi:10.1090/s0025-5718-66-99924-8 | es_ES |