- -

Multipoint efficient iterative methods and the dynamics of Ostrowski's method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multipoint efficient iterative methods and the dynamics of Ostrowski's method

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hueso, Jose L. es_ES
dc.contributor.author Martínez Molada, Eulalia es_ES
dc.contributor.author Teruel-Ferragud, Carles es_ES
dc.date.accessioned 2020-03-30T07:21:59Z
dc.date.available 2020-03-30T07:21:59Z
dc.date.issued 2019-09-02 es_ES
dc.identifier.issn 0020-7160 es_ES
dc.identifier.uri http://hdl.handle.net/10251/139766
dc.description This is an Author's Accepted Manuscript of an article published in José L. Hueso, Eulalia Martínez & Carles Teruel (2019) Multipoint efficient iterative methods and the dynamics of Ostrowski's method, International Journal of Computer Mathematics, 96:9, 1687-1701, DOI: 10.1080/00207160.2015.1080354 in the International Journal of Computer Mathematics, SEP 2 2019 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/10.1080/00207160.2015.1080354 es_ES
dc.description.abstract [EN] In this work, we introduce a modification into the technique, presented in A. Cordero, J.L. Hueso, E. Martinez, and J.R. Torregrosa [Increasing the convergence order of an iterative method for nonlinear systems, Appl. Math. Lett. 25 (2012), pp. 2369-2374], that increases by two units the convergence order of an iterative method. The main idea is to compose a given iterative method of order p with a modification of Newton's method that introduces just one evaluation of the function, obtaining a new method of order p+2, avoiding the need to compute more than one derivative, so we improve the efficiency index in the scalar case. This procedure can be repeated n times, with the same approximation to the derivative, obtaining new iterative methods of order p+2n. We perform different numerical tests that confirm the theoretical results. By applying this procedure to Newton's method one obtains the well known fourth order Ostrowski's method. We finally analyse its dynamical behaviour on second and third degree real polynomials. es_ES
dc.description.sponsorship This research was supported by Ministerio de Economia y Competitividad under grant PGC2018-095896-B-C22 and by the project of Generalitat Valenciana Prometeo/2016/089. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof International Journal of Computer Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear equations es_ES
dc.subject Order of convergence es_ES
dc.subject Iterative methods es_ES
dc.subject Dynamics es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Multipoint efficient iterative methods and the dynamics of Ostrowski's method es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00207160.2015.1080354 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Hueso, JL.; Martínez Molada, E.; Teruel-Ferragud, C. (2019). Multipoint efficient iterative methods and the dynamics of Ostrowski's method. International Journal of Computer Mathematics. 96(9):1687-1701. https://doi.org/10.1080/00207160.2015.1080354 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/00207160.2015.1080354 es_ES
dc.description.upvformatpinicio 1687 es_ES
dc.description.upvformatpfin 1701 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 96 es_ES
dc.description.issue 9 es_ES
dc.relation.pasarela S\394073 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Amat, S., Busquier, S., & Plaza, S. (2010). Chaotic dynamics of a third-order Newton-type method. Journal of Mathematical Analysis and Applications, 366(1), 24-32. doi:10.1016/j.jmaa.2010.01.047 es_ES
dc.description.references Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062 es_ES
dc.description.references Cordero, A., Martínez, E., & Torregrosa, J. R. (2009). Iterative methods of order four and five for systems of nonlinear equations. Journal of Computational and Applied Mathematics, 231(2), 541-551. doi:10.1016/j.cam.2009.04.015 es_ES
dc.description.references Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2012). Increasing the convergence order of an iterative method for nonlinear systems. Applied Mathematics Letters, 25(12), 2369-2374. doi:10.1016/j.aml.2012.07.005 es_ES
dc.description.references Jarratt, P. (1966). Some fourth order multipoint iterative methods for solving equations. Mathematics of Computation, 20(95), 434-434. doi:10.1090/s0025-5718-66-99924-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem