- -

Novel symplectic integrators for the Klein-Gordon equation with space- and time-dependent mass

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Novel symplectic integrators for the Klein-Gordon equation with space- and time-dependent mass

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bader, Philipp es_ES
dc.contributor.author Blanes Zamora, Sergio es_ES
dc.contributor.author Casas, Fernando es_ES
dc.contributor.author Kopylov, Nikita es_ES
dc.date.accessioned 2020-03-30T07:22:02Z
dc.date.available 2020-03-30T07:22:02Z
dc.date.issued 2019-04 es_ES
dc.identifier.issn 0377-0427 es_ES
dc.identifier.uri http://hdl.handle.net/10251/139767
dc.description.abstract [EN] We consider the numerical time-integration of the non-stationary Klein-Gordon equation with position- and time-dependent mass. A novel class of time-averaged symplectic splitting methods involving double commutators is analyzed and 4th- and 6th-order integrators are obtained. In contrast with standard splitting methods (that contain negative coefficients if the order is higher than two), additional commutators are incorporated into the schemes considered here. As a result, we can circumvent this order barrier and construct high order integrators with positive coefficients and a much reduced number of stages, thus improving considerably their efficiency. The performance of the new schemes is tested on several examples. es_ES
dc.description.sponsorship This work has been funded by Ministerio de Economia, Industria y Competitividad (Spain) through project MTM2016-77660-P (AEI/FEDER, UE). Kopylov has also been partly supported by grant GRISOLIA/2015/A/137 from the Generalitat Valenciana. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational and Applied Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Klein-Gordon equation es_ES
dc.subject Time-dependent mass es_ES
dc.subject Second-order linear differential equations es_ES
dc.subject Symplectic integrators es_ES
dc.subject Magnus expansion es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Novel symplectic integrators for the Klein-Gordon equation with space- and time-dependent mass es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cam.2018.10.011 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIA%2F2015%2FA%2F137/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-77660-P/ES/NUEVOS RETOS EN INTEGRACION NUMERICA: FUNDAMENTOS ALGEBRAICOS, METODOS DE ESCISION, METODOS DE MONTECARLO Y OTRAS APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bader, P.; Blanes Zamora, S.; Casas, F.; Kopylov, N. (2019). Novel symplectic integrators for the Klein-Gordon equation with space- and time-dependent mass. Journal of Computational and Applied Mathematics. 350:130-138. https://doi.org/10.1016/j.cam.2018.10.011 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cam.2018.10.011 es_ES
dc.description.upvformatpinicio 130 es_ES
dc.description.upvformatpfin 138 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 350 es_ES
dc.relation.pasarela S\372719 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem