- -

Novel Conceptual Architecture for the Next-Generation Electricity Markets to Enhance a Large Penetration of Renewable Energy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Novel Conceptual Architecture for the Next-Generation Electricity Markets to Enhance a Large Penetration of Renewable Energy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodríguez-García, Javier es_ES
dc.contributor.author Ribó-Pérez, David Gabriel es_ES
dc.contributor.author Álvarez, Carlos es_ES
dc.contributor.author Peñalvo-López, Elisa es_ES
dc.date.accessioned 2020-03-30T07:22:07Z
dc.date.available 2020-03-30T07:22:07Z
dc.date.issued 2019-07-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/139769
dc.description.abstract [EN] A transition to a sustainable energy system is essential. In this context, smart grids represent the future of power systems for efficiently integrating renewable energy sources and active consumer participation. Recently, different studies were performed that defined the conceptual architecture of power systems and their agents. However, these conceptual architectures do not overcome all issues for the development of new electricity markets. Thus, a novel conceptual architecture is proposed. The transactions of energy, operation services, and economic flows among the agents proposed are carefully analysed. In this regard, the results allow setting their activities' boundaries and state their relationships with electricity markets. The suitability of implementing local electricity markets is studied to enforce competition among distributed energy resources by unlocking all the potential that active consumers have. The proposed architecture is designed to offer flexibility and efficiency to the system thanks to a clearly defined way for the exploitation of flexible resources and distributed generation. This upgraded architecture hereby proposed establishes the characteristics of each agent in the forthcoming markets and studies to overcome the barriers to the large deployment of renewable energy sources. es_ES
dc.description.sponsorship This work was supported by the Ministerio de Economia, Industria, y Competitividad (Spanish Government) under research project ENE-2016-78509-C3-1-P, and EU FEDER funds. The authors received funds from these grants for covering the costs to publish in open access. This work was also supported by the Spanish Ministry of Education under the scholarship FPU16/00962. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Electricity markets es_ES
dc.subject Power system es_ES
dc.subject Conceptual architecture es_ES
dc.subject Distributed generation es_ES
dc.subject Flexible resources es_ES
dc.subject Local electricity markets es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Novel Conceptual Architecture for the Next-Generation Electricity Markets to Enhance a Large Penetration of Renewable Energy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en12132605 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2016-78509-C3-1-P/ES/DESARROLLO DE LA RESPUESTA AGREGADA DE LA DEMANDA MEDIANTE MODELOS IMBRICADOS Y SU INTERACCION CON TECNOLOGIAS DE MEDIDA Y CONTROL EN LOS SECTORES RESIDENCIALES Y COMERCIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU16%2F00962/ES/FPU16%2F00962/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Rodríguez-García, J.; Ribó-Pérez, DG.; Álvarez, C.; Peñalvo-López, E. (2019). Novel Conceptual Architecture for the Next-Generation Electricity Markets to Enhance a Large Penetration of Renewable Energy. Energies. 12(13):1-23. https://doi.org/10.3390/en12132605 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en12132605 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 13 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\391157 es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Gabaldón, A., Guillamón, A., Ruiz, M. C., Valero, S., Álvarez, C., Ortiz, M., & Senabre, C. (2010). Development of a methodology for clustering electricity-price series to improve customer response initiatives. IET Generation, Transmission & Distribution, 4(6), 706. doi:10.1049/iet-gtd.2009.0112 es_ES
dc.description.references Weitemeyer, S., Kleinhans, D., Vogt, T., & Agert, C. (2015). Integration of Renewable Energy Sources in future power systems: The role of storage. Renewable Energy, 75, 14-20. doi:10.1016/j.renene.2014.09.028 es_ES
dc.description.references Albano, M., Ferreira, L. L., & Pinho, L. M. (2015). Convergence of Smart Grid ICT Architectures for the Last Mile. IEEE Transactions on Industrial Informatics, 11(1), 187-197. doi:10.1109/tii.2014.2379436 es_ES
dc.description.references Goncalves Da Silva, P., Ilic, D., & Karnouskos, S. (2014). The Impact of Smart Grid Prosumer Grouping on Forecasting Accuracy and Its Benefits for Local Electricity Market Trading. IEEE Transactions on Smart Grid, 5(1), 402-410. doi:10.1109/tsg.2013.2278868 es_ES
dc.description.references Ipakchi, A., & Albuyeh, F. (2009). Grid of the future. IEEE Power and Energy Magazine, 7(2), 52-62. doi:10.1109/mpe.2008.931384 es_ES
dc.description.references Coelho, V. N., Weiss Cohen, M., Coelho, I. M., Liu, N., & Guimarães, F. G. (2017). Multi-agent systems applied for energy systems integration: State-of-the-art applications and trends in microgrids. Applied Energy, 187, 820-832. doi:10.1016/j.apenergy.2016.10.056 es_ES
dc.description.references Logenthiran, T., Srinivasan, D., & Khambadkone, A. M. (2011). Multi-agent system for energy resource scheduling of integrated microgrids in a distributed system. Electric Power Systems Research, 81(1), 138-148. doi:10.1016/j.epsr.2010.07.019 es_ES
dc.description.references Radhakrishnan, B. M., & Srinivasan, D. (2016). A multi-agent based distributed energy management scheme for smart grid applications. Energy, 103, 192-204. doi:10.1016/j.energy.2016.02.117 es_ES
dc.description.references Yoo, C.-H., Chung, I.-Y., Lee, H.-J., & Hong, S.-S. (2013). Intelligent Control of Battery Energy Storage for Multi-Agent Based Microgrid Energy Management. Energies, 6(10), 4956-4979. doi:10.3390/en6104956 es_ES
dc.description.references Zhao, B., Xue, M., Zhang, X., Wang, C., & Zhao, J. (2015). An MAS based energy management system for a stand-alone microgrid at high altitude. Applied Energy, 143, 251-261. doi:10.1016/j.apenergy.2015.01.016 es_ES
dc.description.references Ringler, P., Keles, D., & Fichtner, W. (2016). Agent-based modelling and simulation of smart electricity grids and markets – A literature review. Renewable and Sustainable Energy Reviews, 57, 205-215. doi:10.1016/j.rser.2015.12.169 es_ES
dc.description.references Wang, Q., Zhang, C., Ding, Y., Xydis, G., Wang, J., & Østergaard, J. (2015). Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response. Applied Energy, 138, 695-706. doi:10.1016/j.apenergy.2014.10.048 es_ES
dc.description.references Pandžić, H., Kuzle, I., & Capuder, T. (2013). Virtual power plant mid-term dispatch optimization. Applied Energy, 101, 134-141. doi:10.1016/j.apenergy.2012.05.039 es_ES
dc.description.references Pandžić, H., Morales, J. M., Conejo, A. J., & Kuzle, I. (2013). Offering model for a virtual power plant based on stochastic programming. Applied Energy, 105, 282-292. doi:10.1016/j.apenergy.2012.12.077 es_ES
dc.description.references Rahimiyan, M., & Baringo, L. (2016). Strategic Bidding for a Virtual Power Plant in the Day-Ahead and Real-Time Markets: A Price-Taker Robust Optimization Approach. IEEE Transactions on Power Systems, 31(4), 2676-2687. doi:10.1109/tpwrs.2015.2483781 es_ES
dc.description.references Mnatsakanyan, A., & Kennedy, S. W. (2015). A Novel Demand Response Model with an Application for a Virtual Power Plant. IEEE Transactions on Smart Grid, 6(1), 230-237. doi:10.1109/tsg.2014.2339213 es_ES
dc.description.references Bartolucci, L., Cordiner, S., Mulone, V., & Santarelli, M. (2019). Ancillary Services Provided by Hybrid Residential Renewable Energy Systems through Thermal and Electrochemical Storage Systems. Energies, 12(12), 2429. doi:10.3390/en12122429 es_ES
dc.description.references Cucchiella, F., D’Adamo, I., Gastaldi, M., & Stornelli, V. (2018). Solar Photovoltaic Panels Combined with Energy Storage in a Residential Building: An Economic Analysis. Sustainability, 10(9), 3117. doi:10.3390/su10093117 es_ES
dc.description.references Dupont, B., De Jonghe, C., Olmos, L., & Belmans, R. (2014). Demand response with locational dynamic pricing to support the integration of renewables. Energy Policy, 67, 344-354. doi:10.1016/j.enpol.2013.12.058 es_ES
dc.description.references Comparison of Actual Costs to Integrate Commercial Buildings with the Grid; Jun. 2016https://www.semanticscholar.org/paper/Comparison-of-Actual-Costs-to-Integrate-Commercial-Piette-Black/b953cfef9716b1f87c759048ef714e8c70e19869/ es_ES
dc.description.references Alfonso, D., Pérez-Navarro, A., Encinas, N., Álvarez, C., Rodríguez, J., & Alcázar, M. (2007). Methodology for ranking customer segments by their suitability for distributed energy resources applications. Energy Conversion and Management, 48(5), 1615-1623. doi:10.1016/j.enconman.2006.11.006 es_ES
dc.description.references Rodríguez-García, J., Álvarez-Bel, C., Carbonell-Carretero, J.-F., Alcázar-Ortega, M., & Peñalvo-López, E. (2016). A novel tool for the evaluation and assessment of demand response activities in the industrial sector. Energy, 113, 1136-1146. doi:10.1016/j.energy.2016.07.146 es_ES
dc.description.references Morales, D. X., Besanger, Y., Sami, S., & Alvarez Bel, C. (2017). Assessment of the impact of intelligent DSM methods in the Galapagos Islands toward a Smart Grid. Electric Power Systems Research, 146, 308-320. doi:10.1016/j.epsr.2017.02.003 es_ES
dc.description.references Derakhshan, G., Shayanfar, H. A., & Kazemi, A. (2016). The optimization of demand response programs in smart grids. Energy Policy, 94, 295-306. doi:10.1016/j.enpol.2016.04.009 es_ES
dc.description.references Söyrinki, S., Heiskanen, E., & Matschoss, K. (2018). Piloting Demand Response in Retailing: Lessons Learned in Real-Life Context. Sustainability, 10(10), 3790. doi:10.3390/su10103790 es_ES
dc.description.references McPherson, M., & Tahseen, S. (2018). Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure. Energy, 145, 856-870. doi:10.1016/j.energy.2018.01.002 es_ES
dc.description.references Hornsdale Power Reserve, Year 1 Technical and Market Impact Case Studyhttps://www.aurecongroup.com/markets/energy/hornsdale-power-reserve-impact-study/ es_ES
dc.description.references Burger, S., Chaves-Ávila, J. P., Batlle, C., & Pérez-Arriaga, I. J. (2017). A review of the value of aggregators in electricity systems. Renewable and Sustainable Energy Reviews, 77, 395-405. doi:10.1016/j.rser.2017.04.014 es_ES
dc.description.references Niesten, E., & Alkemade, F. (2016). How is value created and captured in smart grids? A review of the literature and an analysis of pilot projects. Renewable and Sustainable Energy Reviews, 53, 629-638. doi:10.1016/j.rser.2015.08.069 es_ES
dc.description.references Calvillo, C. F., Sánchez-Miralles, A., Villar, J., & Martín, F. (2016). Optimal planning and operation of aggregated distributed energy resources with market participation. Applied Energy, 182, 340-357. doi:10.1016/j.apenergy.2016.08.117 es_ES
dc.description.references Lopes, A. J., Lezama, R., & Pineda, R. (2011). Model Based Systems Engineering for Smart Grids as Systems of Systems. Procedia Computer Science, 6, 441-450. doi:10.1016/j.procs.2011.08.083 es_ES
dc.description.references Lüth, A., Zepter, J. M., Crespo del Granado, P., & Egging, R. (2018). Local electricity market designs for peer-to-peer trading: The role of battery flexibility. Applied Energy, 229, 1233-1243. doi:10.1016/j.apenergy.2018.08.004 es_ES
dc.description.references Kabalci, Y. (2016). A survey on smart metering and smart grid communication. Renewable and Sustainable Energy Reviews, 57, 302-318. doi:10.1016/j.rser.2015.12.114 es_ES
dc.description.references Alahakoon, D., & Yu, X. (2016). Smart Electricity Meter Data Intelligence for Future Energy Systems: A Survey. IEEE Transactions on Industrial Informatics, 12(1), 425-436. doi:10.1109/tii.2015.2414355 es_ES
dc.description.references Luthander, R., Widén, J., Nilsson, D., & Palm, J. (2015). Photovoltaic self-consumption in buildings: A review. Applied Energy, 142, 80-94. doi:10.1016/j.apenergy.2014.12.028 es_ES
dc.description.references Jha, M., Blaabjerg, F., Khan, M. A., Bharath Kurukuru, V. S., & Haque, A. (2019). Intelligent Control of Converter for Electric Vehicles Charging Station. Energies, 12(12), 2334. doi:10.3390/en12122334 es_ES
dc.description.references Full Report Australian Energy Storagehttps://www.smartenergy.org.au/resources/australian-energy-storage-market-analysis/ es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem