Mostrar el registro sencillo del ítem
dc.contributor.author | Rodríguez-García, Javier | es_ES |
dc.contributor.author | Ribó-Pérez, David Gabriel | es_ES |
dc.contributor.author | Álvarez, Carlos | es_ES |
dc.contributor.author | Peñalvo-López, Elisa | es_ES |
dc.date.accessioned | 2020-03-30T07:22:07Z | |
dc.date.available | 2020-03-30T07:22:07Z | |
dc.date.issued | 2019-07-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/139769 | |
dc.description.abstract | [EN] A transition to a sustainable energy system is essential. In this context, smart grids represent the future of power systems for efficiently integrating renewable energy sources and active consumer participation. Recently, different studies were performed that defined the conceptual architecture of power systems and their agents. However, these conceptual architectures do not overcome all issues for the development of new electricity markets. Thus, a novel conceptual architecture is proposed. The transactions of energy, operation services, and economic flows among the agents proposed are carefully analysed. In this regard, the results allow setting their activities' boundaries and state their relationships with electricity markets. The suitability of implementing local electricity markets is studied to enforce competition among distributed energy resources by unlocking all the potential that active consumers have. The proposed architecture is designed to offer flexibility and efficiency to the system thanks to a clearly defined way for the exploitation of flexible resources and distributed generation. This upgraded architecture hereby proposed establishes the characteristics of each agent in the forthcoming markets and studies to overcome the barriers to the large deployment of renewable energy sources. | es_ES |
dc.description.sponsorship | This work was supported by the Ministerio de Economia, Industria, y Competitividad (Spanish Government) under research project ENE-2016-78509-C3-1-P, and EU FEDER funds. The authors received funds from these grants for covering the costs to publish in open access. This work was also supported by the Spanish Ministry of Education under the scholarship FPU16/00962. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Energies | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Electricity markets | es_ES |
dc.subject | Power system | es_ES |
dc.subject | Conceptual architecture | es_ES |
dc.subject | Distributed generation | es_ES |
dc.subject | Flexible resources | es_ES |
dc.subject | Local electricity markets | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.title | Novel Conceptual Architecture for the Next-Generation Electricity Markets to Enhance a Large Penetration of Renewable Energy | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/en12132605 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2016-78509-C3-1-P/ES/DESARROLLO DE LA RESPUESTA AGREGADA DE LA DEMANDA MEDIANTE MODELOS IMBRICADOS Y SU INTERACCION CON TECNOLOGIAS DE MEDIDA Y CONTROL EN LOS SECTORES RESIDENCIALES Y COMERCIALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU16%2F00962/ES/FPU16%2F00962/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.description.bibliographicCitation | Rodríguez-García, J.; Ribó-Pérez, DG.; Álvarez, C.; Peñalvo-López, E. (2019). Novel Conceptual Architecture for the Next-Generation Electricity Markets to Enhance a Large Penetration of Renewable Energy. Energies. 12(13):1-23. https://doi.org/10.3390/en12132605 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/en12132605 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 23 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 13 | es_ES |
dc.identifier.eissn | 1996-1073 | es_ES |
dc.relation.pasarela | S\391157 | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Gabaldón, A., Guillamón, A., Ruiz, M. C., Valero, S., Álvarez, C., Ortiz, M., & Senabre, C. (2010). Development of a methodology for clustering electricity-price series to improve customer response initiatives. IET Generation, Transmission & Distribution, 4(6), 706. doi:10.1049/iet-gtd.2009.0112 | es_ES |
dc.description.references | Weitemeyer, S., Kleinhans, D., Vogt, T., & Agert, C. (2015). Integration of Renewable Energy Sources in future power systems: The role of storage. Renewable Energy, 75, 14-20. doi:10.1016/j.renene.2014.09.028 | es_ES |
dc.description.references | Albano, M., Ferreira, L. L., & Pinho, L. M. (2015). Convergence of Smart Grid ICT Architectures for the Last Mile. IEEE Transactions on Industrial Informatics, 11(1), 187-197. doi:10.1109/tii.2014.2379436 | es_ES |
dc.description.references | Goncalves Da Silva, P., Ilic, D., & Karnouskos, S. (2014). The Impact of Smart Grid Prosumer Grouping on Forecasting Accuracy and Its Benefits for Local Electricity Market Trading. IEEE Transactions on Smart Grid, 5(1), 402-410. doi:10.1109/tsg.2013.2278868 | es_ES |
dc.description.references | Ipakchi, A., & Albuyeh, F. (2009). Grid of the future. IEEE Power and Energy Magazine, 7(2), 52-62. doi:10.1109/mpe.2008.931384 | es_ES |
dc.description.references | Coelho, V. N., Weiss Cohen, M., Coelho, I. M., Liu, N., & Guimarães, F. G. (2017). Multi-agent systems applied for energy systems integration: State-of-the-art applications and trends in microgrids. Applied Energy, 187, 820-832. doi:10.1016/j.apenergy.2016.10.056 | es_ES |
dc.description.references | Logenthiran, T., Srinivasan, D., & Khambadkone, A. M. (2011). Multi-agent system for energy resource scheduling of integrated microgrids in a distributed system. Electric Power Systems Research, 81(1), 138-148. doi:10.1016/j.epsr.2010.07.019 | es_ES |
dc.description.references | Radhakrishnan, B. M., & Srinivasan, D. (2016). A multi-agent based distributed energy management scheme for smart grid applications. Energy, 103, 192-204. doi:10.1016/j.energy.2016.02.117 | es_ES |
dc.description.references | Yoo, C.-H., Chung, I.-Y., Lee, H.-J., & Hong, S.-S. (2013). Intelligent Control of Battery Energy Storage for Multi-Agent Based Microgrid Energy Management. Energies, 6(10), 4956-4979. doi:10.3390/en6104956 | es_ES |
dc.description.references | Zhao, B., Xue, M., Zhang, X., Wang, C., & Zhao, J. (2015). An MAS based energy management system for a stand-alone microgrid at high altitude. Applied Energy, 143, 251-261. doi:10.1016/j.apenergy.2015.01.016 | es_ES |
dc.description.references | Ringler, P., Keles, D., & Fichtner, W. (2016). Agent-based modelling and simulation of smart electricity grids and markets – A literature review. Renewable and Sustainable Energy Reviews, 57, 205-215. doi:10.1016/j.rser.2015.12.169 | es_ES |
dc.description.references | Wang, Q., Zhang, C., Ding, Y., Xydis, G., Wang, J., & Østergaard, J. (2015). Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response. Applied Energy, 138, 695-706. doi:10.1016/j.apenergy.2014.10.048 | es_ES |
dc.description.references | Pandžić, H., Kuzle, I., & Capuder, T. (2013). Virtual power plant mid-term dispatch optimization. Applied Energy, 101, 134-141. doi:10.1016/j.apenergy.2012.05.039 | es_ES |
dc.description.references | Pandžić, H., Morales, J. M., Conejo, A. J., & Kuzle, I. (2013). Offering model for a virtual power plant based on stochastic programming. Applied Energy, 105, 282-292. doi:10.1016/j.apenergy.2012.12.077 | es_ES |
dc.description.references | Rahimiyan, M., & Baringo, L. (2016). Strategic Bidding for a Virtual Power Plant in the Day-Ahead and Real-Time Markets: A Price-Taker Robust Optimization Approach. IEEE Transactions on Power Systems, 31(4), 2676-2687. doi:10.1109/tpwrs.2015.2483781 | es_ES |
dc.description.references | Mnatsakanyan, A., & Kennedy, S. W. (2015). A Novel Demand Response Model with an Application for a Virtual Power Plant. IEEE Transactions on Smart Grid, 6(1), 230-237. doi:10.1109/tsg.2014.2339213 | es_ES |
dc.description.references | Bartolucci, L., Cordiner, S., Mulone, V., & Santarelli, M. (2019). Ancillary Services Provided by Hybrid Residential Renewable Energy Systems through Thermal and Electrochemical Storage Systems. Energies, 12(12), 2429. doi:10.3390/en12122429 | es_ES |
dc.description.references | Cucchiella, F., D’Adamo, I., Gastaldi, M., & Stornelli, V. (2018). Solar Photovoltaic Panels Combined with Energy Storage in a Residential Building: An Economic Analysis. Sustainability, 10(9), 3117. doi:10.3390/su10093117 | es_ES |
dc.description.references | Dupont, B., De Jonghe, C., Olmos, L., & Belmans, R. (2014). Demand response with locational dynamic pricing to support the integration of renewables. Energy Policy, 67, 344-354. doi:10.1016/j.enpol.2013.12.058 | es_ES |
dc.description.references | Comparison of Actual Costs to Integrate Commercial Buildings with the Grid; Jun. 2016https://www.semanticscholar.org/paper/Comparison-of-Actual-Costs-to-Integrate-Commercial-Piette-Black/b953cfef9716b1f87c759048ef714e8c70e19869/ | es_ES |
dc.description.references | Alfonso, D., Pérez-Navarro, A., Encinas, N., Álvarez, C., Rodríguez, J., & Alcázar, M. (2007). Methodology for ranking customer segments by their suitability for distributed energy resources applications. Energy Conversion and Management, 48(5), 1615-1623. doi:10.1016/j.enconman.2006.11.006 | es_ES |
dc.description.references | Rodríguez-García, J., Álvarez-Bel, C., Carbonell-Carretero, J.-F., Alcázar-Ortega, M., & Peñalvo-López, E. (2016). A novel tool for the evaluation and assessment of demand response activities in the industrial sector. Energy, 113, 1136-1146. doi:10.1016/j.energy.2016.07.146 | es_ES |
dc.description.references | Morales, D. X., Besanger, Y., Sami, S., & Alvarez Bel, C. (2017). Assessment of the impact of intelligent DSM methods in the Galapagos Islands toward a Smart Grid. Electric Power Systems Research, 146, 308-320. doi:10.1016/j.epsr.2017.02.003 | es_ES |
dc.description.references | Derakhshan, G., Shayanfar, H. A., & Kazemi, A. (2016). The optimization of demand response programs in smart grids. Energy Policy, 94, 295-306. doi:10.1016/j.enpol.2016.04.009 | es_ES |
dc.description.references | Söyrinki, S., Heiskanen, E., & Matschoss, K. (2018). Piloting Demand Response in Retailing: Lessons Learned in Real-Life Context. Sustainability, 10(10), 3790. doi:10.3390/su10103790 | es_ES |
dc.description.references | McPherson, M., & Tahseen, S. (2018). Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure. Energy, 145, 856-870. doi:10.1016/j.energy.2018.01.002 | es_ES |
dc.description.references | Hornsdale Power Reserve, Year 1 Technical and Market Impact Case Studyhttps://www.aurecongroup.com/markets/energy/hornsdale-power-reserve-impact-study/ | es_ES |
dc.description.references | Burger, S., Chaves-Ávila, J. P., Batlle, C., & Pérez-Arriaga, I. J. (2017). A review of the value of aggregators in electricity systems. Renewable and Sustainable Energy Reviews, 77, 395-405. doi:10.1016/j.rser.2017.04.014 | es_ES |
dc.description.references | Niesten, E., & Alkemade, F. (2016). How is value created and captured in smart grids? A review of the literature and an analysis of pilot projects. Renewable and Sustainable Energy Reviews, 53, 629-638. doi:10.1016/j.rser.2015.08.069 | es_ES |
dc.description.references | Calvillo, C. F., Sánchez-Miralles, A., Villar, J., & Martín, F. (2016). Optimal planning and operation of aggregated distributed energy resources with market participation. Applied Energy, 182, 340-357. doi:10.1016/j.apenergy.2016.08.117 | es_ES |
dc.description.references | Lopes, A. J., Lezama, R., & Pineda, R. (2011). Model Based Systems Engineering for Smart Grids as Systems of Systems. Procedia Computer Science, 6, 441-450. doi:10.1016/j.procs.2011.08.083 | es_ES |
dc.description.references | Lüth, A., Zepter, J. M., Crespo del Granado, P., & Egging, R. (2018). Local electricity market designs for peer-to-peer trading: The role of battery flexibility. Applied Energy, 229, 1233-1243. doi:10.1016/j.apenergy.2018.08.004 | es_ES |
dc.description.references | Kabalci, Y. (2016). A survey on smart metering and smart grid communication. Renewable and Sustainable Energy Reviews, 57, 302-318. doi:10.1016/j.rser.2015.12.114 | es_ES |
dc.description.references | Alahakoon, D., & Yu, X. (2016). Smart Electricity Meter Data Intelligence for Future Energy Systems: A Survey. IEEE Transactions on Industrial Informatics, 12(1), 425-436. doi:10.1109/tii.2015.2414355 | es_ES |
dc.description.references | Luthander, R., Widén, J., Nilsson, D., & Palm, J. (2015). Photovoltaic self-consumption in buildings: A review. Applied Energy, 142, 80-94. doi:10.1016/j.apenergy.2014.12.028 | es_ES |
dc.description.references | Jha, M., Blaabjerg, F., Khan, M. A., Bharath Kurukuru, V. S., & Haque, A. (2019). Intelligent Control of Converter for Electric Vehicles Charging Station. Energies, 12(12), 2334. doi:10.3390/en12122334 | es_ES |
dc.description.references | Full Report Australian Energy Storagehttps://www.smartenergy.org.au/resources/australian-energy-storage-market-analysis/ | es_ES |