- -

Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author HEIDENREICH, ELVIO es_ES
dc.contributor.author Ferrero De Loma-Osorio, José María es_ES
dc.contributor.author DOBLARÉ CASTELLANO, MANUEL es_ES
dc.contributor.author RODRÍGUEZ MATAS, JOSÉ FÉLIX es_ES
dc.date.accessioned 2020-03-30T07:22:18Z
dc.date.available 2020-03-30T07:22:18Z
dc.date.issued 2010 es_ES
dc.identifier.issn 0090-6964 es_ES
dc.identifier.uri http://hdl.handle.net/10251/139773
dc.description.abstract [EN] Many problems in Biology and Engineering are governed by anisotropic reaction diffusion equations with a very rapidly varying reaction term. This usually implies the use of very fine meshes and small time steps in order to accurately capture the propagating wave while avoiding the appearance of spurious oscillations in the wave front. This work develops a family of macro finite elements amenable for solving anisotropic reaction diffusion equations with stiff reactive terms. The developed elements are incorporated on a semi-implicit algorithm based on operator splitting that includes adaptive time stepping for handling the stiff reactive term. A linear system is solved on each time step to update the transmembrane potential, whereas the remaining ordinary differential equations are solved uncoupled. The method allows solving the linear system on a coarser mesh thanks to the static condensation of the internal degrees of freedom (DOF) of the macroelements while maintaining the accuracy of the finer mesh. The method and algorithm have been implemented in parallel. The accuracy of the method has been tested on two- and three-dimensional examples demonstrating excellent behavior when compared to standard linear elements. The better performance and scalability of different macro finite elements against standard finite elements have been demonstrated in the simulation of a human heart and a heterogeneous two-dimensional problem with reentrant activity. Results have shown a reduction of up to four times in computational cost for the macro finite elements with respect to equivalent (same number of DOF) standard linear finite elements as well as good scalability properties. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Annals of Biomedical Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cardiac modeling es_ES
dc.subject Efficient numerical schemes es_ES
dc.subject Pseudo-adaptive meshes es_ES
dc.subject Macro finite elements es_ES
dc.subject Monodomain equation es_ES
dc.subject Reaction diffusion equations es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10439-010-9997-2 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Heidenreich, E.; Ferrero De Loma-Osorio, JM.; Doblaré Castellano, M.; Rodríguez Matas, JF. (2010). Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Annals of Biomedical Engineering. 38(7):2331-2345. https://doi.org/10.1007/s10439-010-9997-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10439-010-9997-2 es_ES
dc.description.upvformatpinicio 2331 es_ES
dc.description.upvformatpfin 2345 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 38 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\286096 es_ES
dc.description.references Aliev, R., and A. Panfilov. A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 7:293–301, 1996. es_ES
dc.description.references Barad, M., and P. Colella. A fourth-order accurate local refinement method for Poisson’s equation. J. Comput. Phys. 209:1–18, 2005. es_ES
dc.description.references Bendahmane, M., R. Bürguer, and R. Ruiz-Baier. A multiresolution space-time adaptive scheme for the bidomain model in electrocardiology. Numer. Methods Partial Differ. Equ. 2010. doi: 10.1002/num.20495 es_ES
dc.description.references Bernabeu, M. O., R. Bordas, P. Pathmanathan, J. Pitt-Francis, J. Cooper, A. Garny, D. J. Gavaghan, B. Rodriguez, J. A. Southern, and J. P. Whiteley. Chaste: incorporating a novel multi-scale spatial and temporal algorithm into a large-scale open source library. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367(1895):1907–1930, 2009. es_ES
dc.description.references Buttari, A., and S. Filippone. PSBLAS 2.3 User’s Guide. http://www.ce.uniroma2.it/psblas/ . University of Rome and Tor Vergata, 2008. es_ES
dc.description.references Cherry, E. M., H. S. Greenside, and C. S. Henriquez. A space-time adaptive method for simulating complex cardiac dynamics. Phys. Rev. Lett. 84:1343–1346, 2000. es_ES
dc.description.references Cherry, E. M., H. S. Greenside, and C. S. Henriquez. Efficient simulation of three-dimensional anisotropic cardiac tissue using an adaptive mesh refinement method. Chaos. 13(3):853–865, 2003. es_ES
dc.description.references Colli-Franzone, P., P. Deuflhard, B. Erdmann, J. Lang, and L. F. Pavarino. Adaptivity in space and time for reaction–diffusion systems in electrocardiology. SIAM J. Sci. Comput. 28(3):942–962, 2006. es_ES
dc.description.references Colli-Franzone, P., and L. Pavarino. A parallel solver for reaction–diffusion systems in computational electrocardiology. Math. Models Methods Appl. Sci. 14(6):883–911, 2004. es_ES
dc.description.references Faber, G. M., and Y. Rudy. Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study. Biophys. J. 78(5):2392–2404, 2000. es_ES
dc.description.references Felippa, C. Introduction to Finite Element Methods. Boulder: Department of Aerospace Engineering Sciences, University of Colorado at Boulder, 2007. es_ES
dc.description.references Fenton, F., E. Cherry, A. Karma, and W. Rappel. Modelling wave propagation in realistic heart geometries using the phase-field method. Chaos 15:1–11, 2005. es_ES
dc.description.references Ferrero, J. M., B. Trenor, B. Rodriguez, and J. Saiz. Electrical activity and reentry during acute regional myocardial ischemia: insights from simulations. Int. J. Bifurcat. Chaos. 13:3703–3715, 2003. es_ES
dc.description.references Garfinkel, A., Y. H. Kim, O. Voroshilovsky, Z. Qu, J. R. Kil, M. H. Lee, H. S. Karagueuzian, J. N. Weiss, and P. S. Chen. Preventing ventricular fibrillation by flattering cardiac restitution. Proc. Natl Acad. Sci. 97:6061–6066, 2000. es_ES
dc.description.references Geselowitz, D. B., and W. T. Miller III. A bidomain model for anisotropic cardiac muscle. Ann. Biomed. Eng. 11:315–334, 1983. es_ES
dc.description.references Heidenreich, E. A., J. F. Rodriguez, F. J. Gaspar, and M. Doblare. Fourth order compact schemes with adaptive time step for monodomain reaction difusion equations. J. Comput. Appl. Math. 216:39–55, 2008. es_ES
dc.description.references Helm, P. A. A novel technique for quantifying variability of cardiac anatomy application to the dyssynchronous failing heart. PhD thesis, Johns Hopkins University, 2005. es_ES
dc.description.references Henriquez, C. S. Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit. Rev. Bioeng. 21:1–77, 1993. es_ES
dc.description.references Ho, S. P., and Y. L. Yeh. The use of 2d enriched elements with bubble functions for finite element analysis. Comput. Struct. 84(29–30):2081–2091, 2006. es_ES
dc.description.references Hughes, T. J. R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Englewwog Cliffs, NJ: Prentice Hall Inc., 672 pp., 1987. es_ES
dc.description.references Hunter, P., A. Pullan, and B. Smaill. Modeling total heart function. Annu. Rev. Biomed. Eng. 5:147–177, 2003. es_ES
dc.description.references Katz, A. Physiology of the Heart. Philadelphia, USA: Lippincott Williams and Wilkins, 718 pp., 2001. es_ES
dc.description.references Karypis, G., and V. Kumar. METIS. A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices. http://www.glaros.dtc.umn.edu/gkhome/metis/metis/overview . University of Minnesota, Department of Computer Science/Army HPC Research Center, Minneapolis, MN, version 4.0, 1998. es_ES
dc.description.references Keener, J., and J. Sneyd. Mathematical Physiology. New York: Springer-Verlag, 1148 pp., 2008. es_ES
dc.description.references Penland, R. C., D. M. Harrild, and C. S. Heniquez. Modeling impulse propagation and extracellular potential distributions in anisotropic cardiac tissue using a finite volume discretization. Comput. Visualizat. Sci. 4:215–226, 2000. es_ES
dc.description.references Qu, Z., and A. Garfinkel. An advanced algorithm for solving partial differential equations in cardiac conduction. IEEE Trans. Biomed. Eng. 46: 1166–1168, 1999. es_ES
dc.description.references Rodriguez, B., N. Trayanova, and D. Noble. Modeling cardiac ischemia. Ann. N Y Acad. Sci. 1080:395–414, 2006. es_ES
dc.description.references Rogers, J. M., and A. D. McCulloch. A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41:743–757, 1994. es_ES
dc.description.references Rosamond, W., et al. Heart disease and stroke statistics—2008. Circulation 117:e25–e146, 2008. es_ES
dc.description.references Skouibine, K., N. Trayanova, and P. Moore. A numerical efficient method for simulation of defibrillation in an active bidomain sheet of myocardium. Math. Biosci. 116:85–100, 2000. es_ES
dc.description.references Spotz, W. F., and G. F. Carey. Extension of high-order compact schemes to time-dependent problems. Numer. Methods Partial. Differ. Eq. 17:657–672, 2001. es_ES
dc.description.references Strang G. On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3):506–517, 1968. es_ES
dc.description.references Sundnes, J., B. F. Nielsen, K. A. Mardal, X. Cai, G. T. Lines, and A. Tveito. On the computational complexity of the bidomain and the monodomain models of electrophysiology. Ann. Biomed. Eng. 34:1088–1097, 2006. es_ES
dc.description.references Taggart, P., P. M. Sutton, T. Opthof, R. Coronel, T. Richard, W. Pugsley, and P. Kallis. Inhomogeneous transmural conduction during early ischaemia in patients with coronary artery disease. J. Mol. Cell Cardiol. 32(4):621–630, 2000. es_ES
dc.description.references ten Tusscher, K. H.W. J., D. Noble, P. J. Noble, and A.V. Panfilov. A model of human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286:H1573–H1589, 2004. es_ES
dc.description.references ten Tusscher, K. H. W. J., and A. V. Panfilov. Alternants and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol. 291:H1088–H1100, 2006. es_ES
dc.description.references Trangenstein, J. A., and C. H. Kim. Operator splitting and adaptive mesh refinement for the Luo–Rudy I model. J. Comput. Phys. 196:645–679, 2004. es_ES
dc.description.references Trayanova, N., J. Eason, and F. Aguel. Computer simulations of cardiac defibrillation: a look inside the heart. Comput. Vis. Sci. 4:259–270, 2002. es_ES
dc.description.references Whiteley, J. P. Physiology driven adaptivity for the numerical solution of the bidomain equations. Ann. Biomed. Eng. 35(9):1510–1520, 2007. es_ES
dc.description.references Whiteley, J. An efficient technique for the numerical solution of the bidomain equations. Ann. Biomed. Eng. 36(8):1398–1408, 2008. es_ES
dc.description.references Wilson, E. L. The static condensation algorithm. Int. J. Numer. Methods Eng. 8(1):198–203, 1974. es_ES
dc.description.references Zienkiewicz, O. C., and R. L. Taylor. Finite Element Method, Vol. 1. Butterworth-Heinemann, Burlington, MA: Elsevier, 752 pp., 2005. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem