- -

Carbonylation of Methanol on Metal Acid Zeolites: Evidence for a Mechanism Involving a Multisite Active Center

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Carbonylation of Methanol on Metal Acid Zeolites: Evidence for a Mechanism Involving a Multisite Active Center

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Blasco Lanzuela, Teresa es_ES
dc.contributor.author Boronat Zaragoza, Mercedes es_ES
dc.contributor.author Concepción Heydorn, Patricia es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Law, David es_ES
dc.contributor.author Vidal Moya, José Alejandro es_ES
dc.date.accessioned 2020-03-30T07:22:20Z
dc.date.available 2020-03-30T07:22:20Z
dc.date.issued 2007 es_ES
dc.identifier.issn 1433-7851 es_ES
dc.identifier.uri http://hdl.handle.net/10251/139774
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Angewandte Chemie International Edition es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Carbonylation es_ES
dc.subject Copper es_ES
dc.subject Heterogeneous catalysis es_ES
dc.subject Reaction mechanisms es_ES
dc.subject Zeolites es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Carbonylation of Methanol on Metal Acid Zeolites: Evidence for a Mechanism Involving a Multisite Active Center es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/anie.200700029 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Blasco Lanzuela, T.; Boronat Zaragoza, M.; Concepción Heydorn, P.; Corma Canós, A.; Law, D.; Vidal Moya, JA. (2007). Carbonylation of Methanol on Metal Acid Zeolites: Evidence for a Mechanism Involving a Multisite Active Center. Angewandte Chemie International Edition. 46(21):3938-3941. https://doi.org/10.1002/anie.200700029 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/anie.200700029 es_ES
dc.description.upvformatpinicio 3938 es_ES
dc.description.upvformatpfin 3941 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 46 es_ES
dc.description.issue 21 es_ES
dc.relation.pasarela S\214897 es_ES
dc.description.references in New Syntheses with Carbon Monoxide, (Ed.: ), Springer, Berlin, 1980, pp. 372–413. es_ES
dc.description.references Sunley, G. J., & Watson, D. J. (2000). High productivity methanol carbonylation catalysis using iridium. Catalysis Today, 58(4), 293-307. doi:10.1016/s0920-5861(00)00263-7 es_ES
dc.description.references Stepanov, A. G., Luzgin, M. V., Romannikov, V. N., & Zamaraev, K. I. (1995). NMR Observation of the Koch Reaction in Zeolite H-ZSM-5 under Mild Conditions. Journal of the American Chemical Society, 117(12), 3615-3616. doi:10.1021/ja00117a032 es_ES
dc.description.references Fujimoto, K., Shikada, T., Omata, K., & Tominaga, H. (1984). VAPOR PHASE CARBONYLATION OF METHANOL WITH SOLID ACID CATALYSTS. Chemistry Letters, 13(12), 2047-2050. doi:10.1246/cl.1984.2047 es_ES
dc.description.references Xu, Q., Inoue, S., Tsumori, N., Mori, H., Kameda, M., Tanaka, M., … Souma, Y. (2001). Carbonylation of tert -butyl alcohol over H-zeolites. Journal of Molecular Catalysis A: Chemical, 170(1-2), 147-153. doi:10.1016/s1381-1169(01)00054-1 es_ES
dc.description.references Ellis, B., Howard, M. J., Joyner, R. W., Reddy, K. N., Padley, M. B., & Smith, W. J. (1996). Heterogeneous catalysts for the direct, halide-free carbonylation of methanol. Studies in Surface Science and Catalysis, 771-779. doi:10.1016/s0167-2991(96)80288-6 es_ES
dc.description.references Stepanov, A. G., Luzgin, M. V., Romannikov, V. N., Sidelnikov, V. N., & Zamaraev, K. I. (1996). Formation of Carboxylic Acids from Alcohols and Olefins in Zeolite H-ZSM-5 under Mild Conditions via Trapping of Alkyl Carbenium Ions with Carbon Monoxide: Anin Situ13C Solid State NMR Study. Journal of Catalysis, 164(2), 411-421. doi:10.1006/jcat.1996.0397 es_ES
dc.description.references Clingenpeel, T. H., Wessel, T. E., & Biaglow, A. I. (1997). 13C NMR Study of the Carbonylation of Benzene with CO in Sulfated Zirconia. Journal of the American Chemical Society, 119(23), 5469-5470. doi:10.1021/ja970824p es_ES
dc.description.references Luzgin, M. V., Romannikov, V. N., Stepanov, A. G., & Zamaraev, K. I. (1996). Interaction of Olefins with Carbon Monoxide on Zeolite H-ZSM-5. NMR Observation of the Friedel−Crafts Acylation of Alkenes at Ambient Temperature. Journal of the American Chemical Society, 118(44), 10890-10891. doi:10.1021/ja9615381 es_ES
dc.description.references Cheung, P., Bhan, A., Sunley, G. J., & Iglesia, E. (2006). Selective Carbonylation of Dimethyl Ether to Methyl Acetate Catalyzed by Acidic Zeolites. Angewandte Chemie, 118(10), 1647-1650. doi:10.1002/ange.200503898 es_ES
dc.description.references Cheung, P., Bhan, A., Sunley, G. J., & Iglesia, E. (2006). Selective Carbonylation of Dimethyl Ether to Methyl Acetate Catalyzed by Acidic Zeolites. Angewandte Chemie International Edition, 45(10), 1617-1620. doi:10.1002/anie.200503898 es_ES
dc.description.references Jiang, Y., Hunger, M., & Wang, W. (2006). On the Reactivity of Surface Methoxy Species in Acidic Zeolites. Journal of the American Chemical Society, 128(35), 11679-11692. doi:10.1021/ja061018y es_ES
dc.description.references Spoto, G., Zecchina, A., Bordiga, S., Ricchiardi, G., Martra, G., Leofanti, G., & Petrini, G. (1994). Cu(I)-ZSM-5 zeolites prepared by reaction of H-ZSM-5 with gaseous CuCl: Spectroscopic characterization and reactivity towards carbon monoxide and nitric oxide. Applied Catalysis B: Environmental, 3(2-3), 151-172. doi:10.1016/0926-3373(93)e0032-7 es_ES
dc.description.references Bludský, O., Nachtigall, P., Čičmanec, P., Knotek, P., & Bulánek, R. (2005). Characterization of the Cu+ sites in MFI zeolites: combined computational and experimental study. Catalysis Today, 100(3-4), 385-389. doi:10.1016/j.cattod.2004.09.070 es_ES
dc.description.references Campbell, S. M., Jiang, X.-Z., & Howe, R. F. (1999). Methanol to hydrocarbons: spectroscopic studies and the significance of extra-framework aluminium. Microporous and Mesoporous Materials, 29(1-2), 91-108. doi:10.1016/s1387-1811(98)00323-0 es_ES
dc.description.references KUBELKOVA, L. (1990). Reactivity of surface species on zeolites in methanol conversion. Journal of Catalysis, 124(2), 441-450. doi:10.1016/0021-9517(90)90191-l es_ES
dc.description.references Lazo, N. D., Murray, D. K., Kieke, M. L., & Haw, J. F. (1992). In situ carbon-13 solid-state NMR study of the Cu/ZnO/Al2O3 methanol synthesis catalyst. Journal of the American Chemical Society, 114(22), 8552-8559. doi:10.1021/ja00048a030 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem