Mostrar el registro sencillo del ítem
dc.contributor.author | Cortés, J.-C. | es_ES |
dc.contributor.author | Navarro-Quiles, A. | es_ES |
dc.contributor.author | Romero, José-Vicente | es_ES |
dc.contributor.author | Roselló, María-Dolores | es_ES |
dc.date.accessioned | 2020-03-31T06:46:20Z | |
dc.date.available | 2020-03-31T06:46:20Z | |
dc.date.issued | 2019-11-30 | es_ES |
dc.identifier.issn | 0170-4214 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/139845 | |
dc.description.abstract | [EN] The study of the dynamics of the size of a population via mathematical modelling is a problem of interest and widely studied. Traditionally, continuous deterministic methods based on differential equations have been used to deal with this problem. However, discrete versions of some models are also available and sometimes more adequate. In this paper, we randomize the Pielou logistic equation in order to include the inherent uncertainty in modelling. Taking advantage of the method of transformation of random variables, we provide a full probabilistic description to the randomized Pielou logistic model via the computation of the probability density functions of the solution stochastic process, the steady state, and the time until a certain level of population is reached. The theoretical results are illustrated by means of two examples: The first one consists of a numerical experiment and the second one shows an application to study the diffusion of a technology using real data. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Ministerio de Economía y Competitividad grant MTM2017-89664-P | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | First probability density function | es_ES |
dc.subject | Modelling real data | es_ES |
dc.subject | Pielou logistic equation | es_ES |
dc.subject | Population dynamics | es_ES |
dc.subject | Random difference stochastic equations | es_ES |
dc.subject | Random variable transformation technique | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Solving the Random Pielou Logistic Equation with the Random Variable Transformation Technique: Theory and Applications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/mma.5440 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cortés, J.; Navarro-Quiles, A.; Romero, J.; Roselló, M. (2019). Solving the Random Pielou Logistic Equation with the Random Variable Transformation Technique: Theory and Applications. Mathematical Methods in the Applied Sciences. 42(17):5708-5717. https://doi.org/10.1002/mma.5440 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/mma.5440 | es_ES |
dc.description.upvformatpinicio | 5708 | es_ES |
dc.description.upvformatpfin | 5717 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 42 | es_ES |
dc.description.issue | 17 | es_ES |
dc.relation.pasarela | S\376560 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Kwasnicki, W. (2013). Logistic growth of the global economy and competitiveness of nations. Technological Forecasting and Social Change, 80(1), 50-76. doi:10.1016/j.techfore.2012.07.007 | es_ES |
dc.description.references | Chen-Charpentier, B. M., & Stanescu, D. (2011). Biofilm growth on medical implants with randomness. Mathematical and Computer Modelling, 54(7-8), 1682-1686. doi:10.1016/j.mcm.2010.11.075 | es_ES |
dc.description.references | Wolfram Research Inc.Mathematica. Version 11.2 Champaign IL;2018. | es_ES |
dc.description.references | CNMC Comisión Nacional de los Mercados y la Competencia.http://data.cnmc.es/datagraph/jsp/inf_anual.jsp Accessed: 2018‐07‐24 (in Spanish). | es_ES |