- -

On the inverse of the Caputo matrix exponential

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

El jueves 27, desde las 00:00 hasta las 10:00 horas, el sistema se apagará debido a tareas de mantenimiento.

On the inverse of the Caputo matrix exponential

Show full item record

Defez Candel, E.; Tung, MM.; Chen-Charpentier, BM.; Alonso Abalos, JM. (2019). On the inverse of the Caputo matrix exponential. Mathematics. 7(12):1-11. https://doi.org/10.3390/math7121137

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/139924

Files in this item

Item Metadata

Title: On the inverse of the Caputo matrix exponential
Author: Defez Candel, Emilio Tung, Michael Ming-Sha Chen-Charpentier, Benito M. Alonso Abalos, José Miguel
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] Matrix exponentials are widely used to efficiently tackle systems of linear differential equations. To be able to solve systems of fractional differential equations, the Caputo matrix exponential of the index a > 0 ...[+]
Subjects: Caputo matrix exponential , Matrix inverse , Fractional derivative , Mittag-Leffler matrix function
Copyrigths: Reconocimiento (by)
Source:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math7121137
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/math7121137
Project ID:
UPV/PAID-06-18
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-89314-P/ES/LIBRERIAS DE ALTAS PRESTACIONES PARA EL CALCULO DE FUNCIONES DE MATRICES Y APLICACIONES/
UPV-VIN/SP20180016
Thanks:
This work has been partially supported by Spanish Ministerio de Economia y Competitividad and European Regional Development Fund (ERDF) grants TIN2017-89314-P and by the Programa de Apoyo a la Investigacion y Desarrollo ...[+]
Type: Artículo

References

Moler, C., & Van Loan, C. (2003). Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later. SIAM Review, 45(1), 3-49. doi:10.1137/s00361445024180

Ortigueira, M. D., & Tenreiro Machado, J. A. (2015). What is a fractional derivative? Journal of Computational Physics, 293, 4-13. doi:10.1016/j.jcp.2014.07.019

Caputo, M. (1967). Linear Models of Dissipation whose Q is almost Frequency Independent--II. Geophysical Journal International, 13(5), 529-539. doi:10.1111/j.1365-246x.1967.tb02303.x [+]
Moler, C., & Van Loan, C. (2003). Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later. SIAM Review, 45(1), 3-49. doi:10.1137/s00361445024180

Ortigueira, M. D., & Tenreiro Machado, J. A. (2015). What is a fractional derivative? Journal of Computational Physics, 293, 4-13. doi:10.1016/j.jcp.2014.07.019

Caputo, M. (1967). Linear Models of Dissipation whose Q is almost Frequency Independent--II. Geophysical Journal International, 13(5), 529-539. doi:10.1111/j.1365-246x.1967.tb02303.x

Rodrigo, M. R. (2016). On fractional matrix exponentials and their explicit calculation. Journal of Differential Equations, 261(7), 4223-4243. doi:10.1016/j.jde.2016.06.023

Garrappa, R., & Popolizio, M. (2018). Computing the Matrix Mittag-Leffler Function with Applications to Fractional Calculus. Journal of Scientific Computing, 77(1), 129-153. doi:10.1007/s10915-018-0699-5

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record