- -

Local convergence balls for nonlinear problems with multiplicity and their extension to eight-order of convergence

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Local convergence balls for nonlinear problems with multiplicity and their extension to eight-order of convergence

Show full item record

Behl, R.; Martínez Molada, E.; Cevallos-Alarcon, FA.; Alshomrani, AS. (2019). Local convergence balls for nonlinear problems with multiplicity and their extension to eight-order of convergence. Mathematical Problems in Engineering. 2019:1-18. https://doi.org/10.1155/2019/1427809

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/139926

Files in this item

Item Metadata

Title: Local convergence balls for nonlinear problems with multiplicity and their extension to eight-order of convergence
Author: Behl, Ramandeep Martínez Molada, Eulalia Cevallos-Alarcon, Fabricio Alfredo Alshomrani, Ali Saleh
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] The main contribution of this study is to present a new optimal eighth-order scheme for locating zeros with multiplicity m > 1. An extensive convergence analysis is presented with the main theorem in order to demonstrate ...[+]
Subjects: Non linear equations , Optimal iterative method , Multiple roots , Efficiency index
Copyrigths: Reconocimiento (by)
Source:
Mathematical Problems in Engineering. (issn: 1024-123X )
DOI: 10.1155/2019/1427809
Publisher:
Hindawi Limited
Publisher version: https://doi.org/10.1155/2019/1427809
Thanks:
This research was partially supported by Ministerio de Economia y Competitividad under grant MTM2014-52016-C2-2-P and by the project of Generalitat Valenciana Prometeo/2016/089.
Type: Artículo

This item appears in the following Collection(s)

Show full item record