- -

Modelación estocástica de lluvias horarias

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Modelación estocástica de lluvias horarias

Show full item record

Martínez, A.; Salas, JD. (2004). Modelación estocástica de lluvias horarias. Ingeniería del agua. 11(1):29-39. https://doi.org/10.4995/ia.2004.2520

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/139971

Files in this item

Item Metadata

Title: Modelación estocástica de lluvias horarias
Author: Martínez, Ana Salas, José D.
Issued date:
Abstract:
[ES] En este artículo se presenta un modelo estocástico para analizar y simular lluvias horarias. El modelo que genera la ocurrencia de lluvias es un modelo periódico discreto autoregresivo de orden 1, denominado PDAR y ...[+]
Subjects: Lluvias horarias , Modelos matemáticos , Lluvias agregadas
Copyrigths: Reserva de todos los derechos
Source:
Ingeniería del agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.2004.2520
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/ia.2004.2520
Thanks:
Se agradece la financiación de los proyectos “Uncertainty and Risk Analysis Under Extreme Hydrologic Events” de la Fundacion Nacional de Ciencias (NSF) de los Estados Unidos de América y “Predictability of Extreme ...[+]
Type: Artículo

Location


 

References

Chebaane, M., J. D. Salas, y D. C. Boes (1995), Product Periodic Autoregressive Processes for Modeling Intermittent Monthly Streamflows, Water Resour. Res., Vol. 31(6), 1513-1518.

Chung, Chen-hua (1999), Probability Distribution, Risk, and Return Period of Dependent Hydrologic events, Dissertation of Civil Engineering, Colorado State University.

Gabriel, K. R y Neumann, J. (1962), A Markov Chain Model for Daily Rainfall Occurrence at Tel Aviv, Quart. J. Royal Met. Soc., Vol. 88, 90-95. [+]
Chebaane, M., J. D. Salas, y D. C. Boes (1995), Product Periodic Autoregressive Processes for Modeling Intermittent Monthly Streamflows, Water Resour. Res., Vol. 31(6), 1513-1518.

Chung, Chen-hua (1999), Probability Distribution, Risk, and Return Period of Dependent Hydrologic events, Dissertation of Civil Engineering, Colorado State University.

Gabriel, K. R y Neumann, J. (1962), A Markov Chain Model for Daily Rainfall Occurrence at Tel Aviv, Quart. J. Royal Met. Soc., Vol. 88, 90-95.

Huff, F. A. (1967), Time Distribution of Rainfall in Heavy Storms, Water Resour. Res., Vol. 3, 1007-1019.

Islam, S., Entekhabi, D., Bras, R. L., y Rodríguez-Iturbe, I. (1990), Parameter Estimation and Sensitivity Analysis for the Modified Bartlett-Lewis Rectangular Pulses Model of Rainfall, J. Geophys. Res., Vol. 95, 2093-2100.

Johnson, N.L., y Kotz, S. (1970), Continuous Univariate Distributions, Vol.1, 300 pp., Houghton Mifflin, Boston, Mass.

Katz, R. W., y Parlange M. B. (1995), Generalizations of Chain-Dependent Processes: Application to Hourly Precipitation, Water Resources Research, Vol. 31(5), 1331-1341.

Katz, R. W. (1977a) Precipitation as a Chain-Cependent Process, J. Appl. Meteorol., Vol. 16, 671-676.

Katz, R. W. (1977b) An Application of Chain-Dependent Processes to Meteorology, J. Appl. Meteorol., Vol. 14, 598-603.

Katz, R. W., y Garrido, J. (1994), Sensitivity Analysis of Extreme Precipitation Events, Int. J. Climatol., Vol. 14, 985-999.

Katz, R. W., y Parlange, M. B. (1993), Effects on an Index of Atmospheric Circulation on Stochastic Properties of Precipitation, Water Resour. Res., Vol. 29, 2335-2344.

Kavvas, M. L. y Delleur, J. W. (1975), The Stochastic and Chronological Structure of Rainfall Sequences-Application to Indiana, technical report 57, Purdue University, Water Resources Center.

LeCam, L. (1961), A Stochastic Description of Precipitation, in Fourth Berkeley Symposium on Mathematics, Statistics, and Probability Proceedings, edited by J. Neyman, 165-186, University of California Press, Berkeley.

Lindgren, B. W. (1968), Statistical Theory, 2nd edn, Macmillan, London, pp. 521.

Nguyen, V.-T.-V. (1984), On Stochastic Chatacterization of Temporal Storm Patterns, Water Sci. Technol., Vol. 16, 147-153.

Nguyen, V.-T.-V. y Rousselle, J. (1981), A Stochastic Model for the Time Distribution of Hourly Rainfall Depth, Water Resour. Res., Vol. 17, 399-409.

Obeysekera, J., Tabios, G. y Salas, J.D. (1987), On Parameter Estimation of Temporal Rainfall Models, Water Resour. Res., Vol. 23(10), 1837-1850.

Rodríguez-Iturbe, I., Febres de Power, B., y Valdés. J. B. (1987), Rectangular Pulses Point Process Models for Rainfall: Analysis of Empirical Data, J. Geophys. Res., Vol. 92, 9645-9656.

Rodríguez-Iturbe, I., Cox, D. R., y Isham, V. (1988), A Point Process Model for Rainfall: Further Developments, Proc. R. Soc. London A, Vol. 417, 283-298.

Roesner, L. A. y Yevjevich, V. (1966), Mathematical Models for Time Series of Monthly Precipitation and Monthly Runoff, Hydrology Paper 15, Colorado State University, Fort Collins, Colorado.

Roldán, J. y Woolhiser, D. A. (1982), Stochastic Daily Precipitation Models, Water Resour. Res., Vol. 18(5), 1451-1459.

Salas, J. D., Delleur, J. W., Yevjevich, V., y Lane, W. L. (1980), Applied Modeling of Hydrologic Time Series, Water Resources Publications.

Salas, J. D. (1993), Chapter 19: Analysis and Modeling of Hydrologic Time Series, Handbook of Hydrology, ed. David R. Maidment, McGraw-Hill.

Sanso, B., y Guenni, L. (1999), A Stochastic Model for Tropical Rainfall at a Single Location, J. of Hydrol., Vol. 214(1-4), 64-73.

Stuart, A., y Ord, J. K. (1987), Kendall's Advanced Theory of Statistics, Vol.1, 5th ed., 604 pp., Oxford University Press, New York.

Todorovic, P., y Woolhiser, D. A. (1975), A Stochastic Model of n-day Precipitation, J. Appl. Meteorol., Vol. 14, 17-24.

Wilks, D. S. (1998), Multisite Generalization of a Daily Stochastic Precipitation Generation Model, J. of Hydrol., Vol. 210(1-4), 178-191.

[-]

This item appears in the following Collection(s)

Show full item record