- -

Uso de la técnica SPH para el estudio de la interacción entre olas y estructuras

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Uso de la técnica SPH para el estudio de la interacción entre olas y estructuras

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gómez Gesteira, M. es_ES
dc.contributor.author Dalrymple, R.A. es_ES
dc.contributor.author Crespo, A.J.C. es_ES
dc.contributor.author Cerqueiro, D. es_ES
dc.date.accessioned 2020-04-02T11:55:14Z
dc.date.available 2020-04-02T11:55:14Z
dc.date.issued 2004-06-30
dc.identifier.issn 1134-2196
dc.identifier.uri http://hdl.handle.net/10251/140033
dc.description.abstract [ES] Se muestra la potencialidad del método SPH (Smoothed Particle Hydrodynamics) para el tratamiento de la interacción entre olas y estructuras. En particular, se estudia el proceso de rebase de una ola sobre una estructura horizontal paralela a la superficie del agua en reposo mediante una versión bidimensional del código y la colisión de una ola solitaria con una estructura vertical delgada mediante una versión tridimensional. En ambos casos se muestra cómo el modelo reproduce tanto cualitativa como cuantitativamente diferentes experimentos de laboratorio. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Ingeniería del agua es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Enginyeria civil es_ES
dc.subject Enginyeria hidràulica es_ES
dc.subject Marítima i sanitària es_ES
dc.title Uso de la técnica SPH para el estudio de la interacción entre olas y estructuras es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ia.2004.2525
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Gómez Gesteira, M.; Dalrymple, R.; Crespo, A.; Cerqueiro, D. (2004). Uso de la técnica SPH para el estudio de la interacción entre olas y estructuras. Ingeniería del agua. 11(2):147-170. https://doi.org/10.4995/ia.2004.2525 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ia.2004.2525 es_ES
dc.description.upvformatpinicio 147 es_ES
dc.description.upvformatpfin 170 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1886-4996
dc.relation.pasarela OJS\2525 es_ES
dc.description.references Baarholm, R.J., 2001. Theoretical and Experimental Studies of Wave Impact underneath Decks of Offshore Platforms. es_ES
dc.description.references Batchelor, G. K., 1974. Introduction to fluid dynamics. Cambridge University Press. U.K. es_ES
dc.description.references Benz, W., 1989. Smooth particle hydrodynamics: A review. Numerical Modeling of Stellar Pulsation: Problems and Prospects, (Proceedings of NATO Workshop, Les Arcs, France). es_ES
dc.description.references Benz, W. and Asphaug, E., 1993. Explicit 3D continuum fracture modeling with smoothed particle hydrodynamics. Proceedings of Twenty- fourth Lunar and Planetary Science Conference. Lunar and Planetary Institute, 99- 100. es_ES
dc.description.references Benz, W. and Asphaug, E., 1994. Impact simulations with fracture. I. Methods and tests. Icarus 107, 98-116. es_ES
dc.description.references Benz, W. and Asphaug, E., 1995. Simulations of brittle solids using smoothed particle hydrodynamics. Comp. Phys. Comm., 87, 253- 265. es_ES
dc.description.references Bonet, J. and Kulasegaram, S., 2000. Corrections and stabilization of Smooth Particle Hydrodynamics methods with applications in metal forming simulations. Intl. J. Num. Meth. Engrng., 47, 1189-1214. es_ES
dc.description.references Buchner, B. and Cozijn, J.L., 1997. An investigation into the numerical simulation of green water. MARIN, February 1997. es_ES
dc.description.references Buchner, B.a and van Ballegoyen, G., 1997a. Joint Industry Project: F(P)SO Green Water Loading. MARIN, May 1997. Volume A2: Technical Report. es_ES
dc.description.references Buchner, B. and van Ballegoyen, G., 1997b. Joint Industry Project: F(P)SO Green Water Loading. MARIN, May 1997. Volume A3: Scale effect tests. es_ES
dc.description.references Buchner, B. and van Ballegoyen, G., 1997c. Joint Industry Project: F(P)SO Green Water Loading. MARIN, May 1997. Volume C9: Buchner, B. and van Ballegoyen, G., 1997d. Joint Industry Project: F(P)SO Green Water Loading. MARIN, December 1997. Volume A1: Discussion Report. es_ES
dc.description.references Cerqueiro, D., Zou, S, Gómez-Gesteira, M, and Dalrymple, R.A. 2004. Boundary conditions generated by static particles in SPH methods. Submitted J. Comput. Phys. es_ES
dc.description.references Chen, S., Johnson, D.B., Raad, P.E., and Fadda, D., 1997. The Surface Marker and Micro Cell Method. International Journal for Numerical Methods in Fluids, 25, 749-778. es_ES
dc.description.references Cox, D. T. and Ortega, J. A., 2002. Laboratory observations of green water overtopping a fixed deck. Ocean Engnrg. 29, 1827-1840. es_ES
dc.description.references Cummins, S. J. and Rudman, M., 1999. An SPH projection meted. J. Comp. Phys. 152, 584-607. es_ES
dc.description.references Dalrymple, R.A. and Knio, O., 2000. SPH Modelling of Water Waves. Proc. Coastal Dynamics, Lund, 779-787 es_ES
dc.description.references Dalrymple, R. A., Knio, O., Cox, D. T., Gomez-Gesteira, M. and Zou, S., 2002. Using a Lagrangian particle method for deck overtopping. Proc. Waves 2001, ASCE. 1083- 1091. es_ES
dc.description.references Durisen, R. H., Gingold, R. A. and Boss, A. P., 1986. Dynamic Fission Instabilities in Rapidly Rotating n=3/2 Polytropes: A Comparison of Results from Finite-difference and Smoothed Particle Hydrodynamics Codes. Astron. J. 305, 281- 308. es_ES
dc.description.references Evrard A.E., 1988. Beyond N-body: 3D cosmological gas dynamics. Mon. Not. R. Astr. Soc., 235, 911- 934. es_ES
dc.description.references Faber, J.A and Manor, J.B., 2001. Post Newtonian SPH Calculations of Binary Neutron Star Coalescence. II. Mass- ratio, equation of state and spin. Physical Review D (63), 044012 (1-16) es_ES
dc.description.references Faber, J.A and Rasio, F.A., 2000. Post Newtonian SPH Calculations of Binary Neutron Stars Coalescence. Method and First Results. Physical Review D (62) 064012 (1-23) es_ES
dc.description.references Faltinsen, O.M., Greco, M. and Landrini, M., 2001. Green water loading on a FPSO. JOMAE Special Issue. es_ES
dc.description.references Fontaine, E., 2000. On the use of smoothed particle hydrodynamics to model extreme waves and their interaction with structures. Proc. Rogue Waves 2000, Brest, France. www.ifremer.fr/metocean/conferences/wk.html es_ES
dc.description.references Gingold, A. and Monaghan, J. J., 1977. Smoothed Particle Hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astr. Soc. 181, 375-389. es_ES
dc.description.references Gómez-Gesteira, M. and Dalrymple, R., 2004. Using a 3D SPH method for wave impact on a tall structure. J. Wtrwy. Port, Coastal and Ocean Engrg.130(2), 63-69 es_ES
dc.description.references Gómez-Gesteira, M., Cerqueiro, D., Crespo, C. and Dalrymple, R.A. 2004. Green water overtopping analyzed with a SPH model. To appear in Ocean Engineering. es_ES
dc.description.references Gotoh, H. and Sakai, T., 1999. Lagrangian simulation of breaking waves using particle meted. Coastal Eng. J. 41(3&4), 303-326. es_ES
dc.description.references Gotoh, H. and Fredsoe, J., 2000. Lagrangian two- phase flow model of the settling behavior of fine sediment dumped into water. In Coastal Engineering 2000, 3906-3919. es_ES
dc.description.references Gotoh, H., Shibahara, T. and Sakai, T., 2001. Sub- particlescale turbulence model for the MPS method- lagrangian flow model for hydraulic engineering. Computational Fluid Dybanics Journal 9(4) 339- 347. es_ES
dc.description.references Gotoh, H., Sakai, T and Hayashi, M., 2002. J. Of Hydroscience and Hydraulic Engineering 20(1) 95-102. es_ES
dc.description.references Greco, M., 2001. A Two-Dimensional Study of Green-Water Loading. Ph. D. Thesis. es_ES
dc.description.references Johnson, G.R,. Stryk, R.A. and Beissel S.R., 1996. SPH for high velocity impact computations. Comput. Methods Applo. Mech. Eng ., 139, 347- 373. es_ES
dc.description.references Habe, A., 1989. In Status Rep. Super Computing Japan, ed. T. Nakamura, M. Nagasawa. National Lab. High Energy Phys. es_ES
dc.description.references Health & Safety Executive. 2001. Analysis of green water susceptibility of FPSO/FSU's on UKCS. HSE Books, Sudbury. es_ES
dc.description.references Herant, M. and Benz, W., 1991. Hydrodynamical instabilities and mixing in SN 1987A - Two-dimensional simulations of the first 3 months. Astrophysical Journal, 370, 81-84 es_ES
dc.description.references Hsu, T., -J, Sakakiyama, T. and Liu, P.L.-F., 2002. A numerical model for waves and turbulence flow in front of a composite breakwater. Coastal Emgrg., 46, 25-50. es_ES
dc.description.references Lahy, N., 1989. A particle method for relativistic fluid mechanics. MSc. Thesis. Monash Univ. es_ES
dc.description.references Libersky, L.D. and Petscheck, A.G., 1991. Smoothed particle hydrodynamics with strength oif materials. Proceedings of the Next Free Lagrange Conference, Vol. 395, Trease, H, Fritts, J and Crowley, W (eds.), Springer- Verlag, 248- 257. es_ES
dc.description.references Libersky, L.D. and Petscheck, A.G., 1993. High strain Lagrangian hydrodynamics- a three- dimensional SPH code for dynamic material response. J. Comput. Phys. 109, 67- 75. es_ES
dc.description.references Liu, G.R., 2003. Mesh Free Methods. Moving Beyond the Finite Element Method. CRC Press. es_ES
dc.description.references Lucy, L., 1977. A numerical approach to the testing of the fission hypothesis. Astron. J. 82(12), 1013-1024. es_ES
dc.description.references Monaghan, J.J., 1989. On the problem of penetration in particle methods. J. Comp. Phys. 82, 1-15. es_ES
dc.description.references Monaghan, J.J., 1992. Smoothed particle hydrodynamics. Ann. Rev. Astron. Appl. 30, 543- 574. es_ES
dc.description.references Monaghan, J.J., 1994. Simulating free surface flows with SPH. J. Comp. Phys. 110, 399- 406. es_ES
dc.description.references Monaghan, J.J., 1996. Gravity Currents and Solitary Waves. Physica D.98, 523-533. es_ES
dc.description.references Monaghan, J.J., Cas, R.F., Kos, A., Hallworth, M., 1999. Gravity currents descending a ramp in a stratified tank. J. Fluid Mech. 379, 39-70. es_ES
dc.description.references Monaghan, J.J.and Kos, A., 1999. Solitary waves on a Cretan beach. J. Wtrwy. Port, Coastal and Ocean Engrg. 125, 145-154. es_ES
dc.description.references Monaghan, J.J., 2000. SPH without tensile instability. J. Comp. Phys. 159, 290-311. es_ES
dc.description.references Monaghan, J.J., Kos, A., 2000. Scott Russell's wave generator. Phys. Fluids 12, 622-630. es_ES
dc.description.references Monaghan, J. J. and Latanzio, J.C. 1985. A refined method for astrophysical problems. Astron. Astrophys, 149, 135- 143. es_ES
dc.description.references Monaghan, J. J. and Latanzio, J.C., 1991.A simulation of the collapse and fragmentation of cooling molecular clouds. Astrophysical Journal, 375, 177-189. es_ES
dc.description.references Nagasawa, M., Nakamura, T., Miyama, S. M., 1988. Three-dimensional hydrodynamical simulations of type II supernova - Mixing and fragmentation of ejecta Publ. Astron. Soc. Jpn. 40, 691-708. es_ES
dc.description.references Peskin, C. S., 1977. Numerical analysis of blood flow in the heart. Journal Computational Physics 25, 220- 252. es_ES
dc.description.references Phillips, G.J. and Monaghan, J.J., 1985. A Numerical Method for Three-dimensional simulations of Collapsing, Isothermal, Magnetic Gas Clouds. Mon. Not. R. Astr. Soc., 216, 883-895 es_ES
dc.description.references Raad, P. http://engr.smu.edu/waves/project.html es_ES
dc.description.references Randles, P.W. and Libersky, L.D., 1996. Smoothed Particle Hydrodynamics - some recent improvementsand applications. Comput. Methods Appl. Mech. Eng., 138, 375- 408. es_ES
dc.description.references Sakakiyama, T. and Liu, P.L.-F., 2001. Laboratory esperiments for wave motions and turbulence flows in front of a breakwater. Coastal Engrg., 44, 117-139. es_ES
dc.description.references Shapiro P.R., Martel H., Villumsen J.V., and Owen J.M., 1996. Adaptive Smoothed Particle Hydrodynamics, with Application to Cosmology: Methodology. Astrophysical Journal Supplement 103, .269- 330 es_ES
dc.description.references Stellingwerf, R. F. and Peterkin, R. E., 1990. Smooth particle magnetohydrodynamics. Tech. Rep. MRC/ABQ-R-1248. Albuquerque: Mission Res. Corp. es_ES
dc.description.references Swelgle, K.S. and Attaway, S.W., 1995. On the feasibility of using smoothed particle hydrodynamics for underwater explotion calculation. Comput- Mech., 17, 151- 168. es_ES
dc.description.references Trulsen, K., Spjelkavik, B. and Mehlum, E., 2002. Green water computed with a spline-based collocation method for potential flow. Intl. J. Appld. Mech. Engrg. 7(1), 107-123. es_ES
dc.description.references Wang, Z., Jensen, J. J., Xia, J., 1998. On the Effect of Green Water on Deck on the Wave Bending Moment. Proceedings of the Seventh International Symposium on Practical Design of Ships and Mobile Units, The Hague es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem