- -

Structure and Conformational Studies of Aza-Crown 8-Amino-BODIPY Derivatives: Influence of Steric Hindrance on Their Photophysical Properties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Structure and Conformational Studies of Aza-Crown 8-Amino-BODIPY Derivatives: Influence of Steric Hindrance on Their Photophysical Properties

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Costero, Ana M. es_ES
dc.contributor.author Betancourt-Mendiola, M.L. es_ES
dc.contributor.author Gaviña, Pablo es_ES
dc.contributor.author Ochando Gómez, Luis Enrique es_ES
dc.contributor.author Gil Grau, Salvador es_ES
dc.contributor.author Chulvi, Katherine es_ES
dc.contributor.author Peña-Cabrera, E. es_ES
dc.date.accessioned 2020-04-06T08:55:55Z
dc.date.available 2020-04-06T08:55:55Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1434-193X es_ES
dc.identifier.uri http://hdl.handle.net/10251/140194
dc.description.abstract [EN] Herein, we report the synthesis, X-ray crystal structure and photophysical studies of six new 8-amino-BODIPY derivatives containing crown or azo-crown ether moieties. The influence of steric hindrance, caused by the crown ether, on the planarity of the BODIPY core and its relationship with the fluorescent properties has been established. H-1 NMR spectroscopic studies were undertaken to clarify the changes in fluorescence observed in the presence of Zn-II. es_ES
dc.description.sponsorship We thank the Spanish Government, Fondos Europeos para el Desarrollo Regional (FEDER) (MAT2015-64139-C4-4-R) and the Generalitat Valenciana (PROMETEOII/2014/047) for support. SCSIE (Universitat de Valencia) is gratefully acknowledged for all the equipment employed. NMR spectra were recorded at the U26 facility of ICTS "NANBIOSIS" at the Universitat of Valencia. M. de L. B.-M. thanks Consejo Nacional de Ciencia y Tecnologia (CONACyT, Mexico) for a graduate scholarship. We thank Consejo Nacional de Ciencia y Tecnologia (CONACyT, grants 123732 and 253623) and Cuantico de Mexico (www.cuantico.mx) for kind donation of 8-methylthioBODIPY. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof European Journal of Organic Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Functional organic materials es_ES
dc.subject Dyes es_ES
dc.subject Pigments es_ES
dc.subject Crown compounds es_ES
dc.subject Fluorescence es_ES
dc.subject Solid-state structures es_ES
dc.subject Zinc es_ES
dc.title Structure and Conformational Studies of Aza-Crown 8-Amino-BODIPY Derivatives: Influence of Steric Hindrance on Their Photophysical Properties es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/ejoc.201701016 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-4-R/ES/QUIMIOSENSORES CROMOGENICOS Y FLUOROGENICOS PARA LA DETECCION DE NEUROTRASMISORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//123732/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//253623/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.description.bibliographicCitation Costero, AM.; Betancourt-Mendiola, M.; Gaviña, P.; Ochando Gómez, LE.; Gil Grau, S.; Chulvi, K.; Peña-Cabrera, E. (2017). Structure and Conformational Studies of Aza-Crown 8-Amino-BODIPY Derivatives: Influence of Steric Hindrance on Their Photophysical Properties. European Journal of Organic Chemistry. 42:6283-6290. https://doi.org/10.1002/ejoc.201701016 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/ejoc.201701016 es_ES
dc.description.upvformatpinicio 6283 es_ES
dc.description.upvformatpfin 6290 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 42 es_ES
dc.relation.pasarela S\352705 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Boens, N., Leen, V., & Dehaen, W. (2012). Fluorescent indicators based on BODIPY. Chem. Soc. Rev., 41(3), 1130-1172. doi:10.1039/c1cs15132k es_ES
dc.description.references Loudet, A., & Burgess, K. (2007). BODIPY Dyes and Their Derivatives:  Syntheses and Spectroscopic Properties. Chemical Reviews, 107(11), 4891-4932. doi:10.1021/cr078381n es_ES
dc.description.references Ulrich, G., Ziessel, R., & Harriman, A. (2008). The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angewandte Chemie International Edition, 47(7), 1184-1201. doi:10.1002/anie.200702070 es_ES
dc.description.references Ulrich, G., Ziessel, R., & Harriman, A. (2008). Die vielseitige Chemie von Bodipy-Fluoreszenzfarbstoffen. Angewandte Chemie, 120(7), 1202-1219. doi:10.1002/ange.200702070 es_ES
dc.description.references Kowada, T., Maeda, H., & Kikuchi, K. (2015). BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chemical Society Reviews, 44(14), 4953-4972. doi:10.1039/c5cs00030k es_ES
dc.description.references Merino, E. J., & Weeks, K. M. (2005). Facile Conversion of Aptamers into Sensors Using a 2‘-Ribose-Linked Fluorophore. Journal of the American Chemical Society, 127(37), 12766-12767. doi:10.1021/ja053189t es_ES
dc.description.references Pretzer, E., & Wiktorowicz, J. E. (2008). Saturation fluorescence labeling of proteins for proteomic analyses. Analytical Biochemistry, 374(2), 250-262. doi:10.1016/j.ab.2007.12.014 es_ES
dc.description.references Rurack, K., Kollmannsberger, M., & Daub, J. (2001). Molecular Switching in the Near Infrared (NIR) with a Functionalized Boron-Dipyrromethene Dye. Angewandte Chemie International Edition, 40(2), 385-387. doi:10.1002/1521-3773(20010119)40:2<385::aid-anie385>3.0.co;2-f es_ES
dc.description.references Rurack, K., Kollmannsberger, M., & Daub, J. (2001). Molekulares Schalten im nahen Infrarot (NIR) mit einem funktionalisierten Bordipyrromethen-Farbstoff. Angewandte Chemie, 113(2), 396-399. doi:10.1002/1521-3757(20010119)113:2<396::aid-ange396>3.0.co;2-w es_ES
dc.description.references Trieflinger, C., Rurack, K., & Daub, J. (2005). ?Turn ON/OFF your LOV light?: Borondipyrromethene-Flavin Dyads as Biomimetic Switches Derived from the LOV Domain. Angewandte Chemie International Edition, 44(15), 2288-2291. doi:10.1002/anie.200462377 es_ES
dc.description.references Trieflinger, C., Rurack, K., & Daub, J. (2005). ?Turn ON/OFF your LOV light?: Bordipyrromethen-Flavin-Dyaden als biomimetische, von der LOV-Dom�ne abgeleitete Schalter. Angewandte Chemie, 117(15), 2328-2331. doi:10.1002/ange.200462377 es_ES
dc.description.references Sunahara, H., Urano, Y., Kojima, H., & Nagano, T. (2007). Design and Synthesis of a Library of BODIPY-Based Environmental Polarity Sensors Utilizing Photoinduced Electron-Transfer-Controlled Fluorescence ON/OFF Switching. Journal of the American Chemical Society, 129(17), 5597-5604. doi:10.1021/ja068551y es_ES
dc.description.references Bandichhor, R., Petrescu, A. D., Vespa, A., Kier, A. B., Schroeder, F., & Burgess, K. (2006). Water-Soluble Through-Bond Energy Transfer Cassettes for Intracellular Imaging. Journal of the American Chemical Society, 128(33), 10688-10689. doi:10.1021/ja063784a es_ES
dc.description.references Gotor, R., Costero, A. M., Gil, S., Parra, M., Martínez-Máñez, R., Sancenón, F., & Gaviña, P. (2013). Selective and sensitive chromogenic detection of cyanide and HCN in solution and in gas phase. Chemical Communications, 49(50), 5669. doi:10.1039/c3cc80006g es_ES
dc.description.references Barba-Bon, A., Costero, A. M., Gil, S., Harriman, A., & Sancenón, F. (2014). Highly Selective Detection of Nerve-Agent Simulants with BODIPY Dyes. Chemistry - A European Journal, 20(21), 6339-6347. doi:10.1002/chem.201304475 es_ES
dc.description.references Chapran, M., Angioni, E., Findlay, N. J., Breig, B., Cherpak, V., Stakhira, P., … Skabara, P. J. (2017). An Ambipolar BODIPY Derivative for a White Exciplex OLED and Cholesteric Liquid Crystal Laser toward Multifunctional Devices. ACS Applied Materials & Interfaces, 9(5), 4750-4757. doi:10.1021/acsami.6b13689 es_ES
dc.description.references Esnal, I., Duran-Sampedro, G., Agarrabeitia, A. R., Bañuelos, J., García-Moreno, I., Macías, M. A., … Ortiz, M. J. (2015). Coumarin–BODIPY hybrids by heteroatom linkage: versatile, tunable and photostable dye lasers for UV irradiation. Physical Chemistry Chemical Physics, 17(12), 8239-8247. doi:10.1039/c5cp00193e es_ES
dc.description.references Roacho, R. I., Metta-Magaña, A., Portillo, M. M., Peña-Cabrera, E., & Pannell, K. H. (2013). 8-Amino-BODIPYs: Structural Variation, Solvent-Dependent Emission, and VT NMR Spectroscopic Properties of 8-R2N-BODIPY. The Journal of Organic Chemistry, 78(9), 4245-4250. doi:10.1021/jo302758a es_ES
dc.description.references Boens, N., Wang, L., Leen, V., Yuan, P., Verbelen, B., Dehaen, W., … Alvarez-Pez, J. M. (2014). 8-HaloBODIPYs and Their 8-(C, N, O, S) Substituted Analogues: Solvent Dependent UV–Vis Spectroscopy, Variable Temperature NMR, Crystal Structure Determination, and Quantum Chemical Calculations. The Journal of Physical Chemistry A, 118(9), 1576-1594. doi:10.1021/jp412132y es_ES
dc.description.references Osorio-Martínez, C. A., Urías-Benavides, A., Gómez-Durán, C. F. A., Bañuelos, J., Esnal, I., López Arbeloa, I., & Peña-Cabrera, E. (2012). 8-AminoBODIPYs: Cyanines or Hemicyanines? The Effect of the Coplanarity of the Amino Group on Their Optical Properties. The Journal of Organic Chemistry, 77(12), 5434-5438. doi:10.1021/jo300724m es_ES
dc.description.references De Lourdes Betancourt-Mendiola, M., Peña-Cabrera, E., Gil, S., Chulvi, K., Ochando, L. E., & Costero, A. M. (2014). Concentration depending fluorescence of 8-(di-(2-picolyl))aminoBODIPY in solution. Tetrahedron, 70(23), 3735-3739. doi:10.1016/j.tet.2014.03.095 es_ES
dc.description.references Müller, B. J., Borisov, S. M., & Klimant, I. (2016). Red- to NIR-Emitting, BODIPY-Based, K+-Selective Fluoroionophores and Sensing Materials. Advanced Functional Materials, 26(42), 7697-7707. doi:10.1002/adfm.201603822 es_ES
dc.description.references Qin, W., Baruah, M., Sliwa, M., Van der Auweraer, M., De Borggraeve, W. M., Beljonne, D., … Boens, N. (2008). Ratiometric, Fluorescent BODIPY Dye with Aza Crown Ether Functionality: Synthesis, Solvatochromism, and Metal Ion Complex Formation. The Journal of Physical Chemistry A, 112(27), 6104-6114. doi:10.1021/jp800261v es_ES
dc.description.references Yang, L., Liao, D.-J., Wu, A., & Yan, H. (2017). Synthesis and fluorescent properties of aza-crown ether tethered BODIPY fluorophores. Tetrahedron Letters, 58(9), 889-891. doi:10.1016/j.tetlet.2017.01.058 es_ES
dc.description.references Goud, T. V., Tutar, A., & Biellmann, J.-F. (2006). Synthesis of 8-heteroatom-substituted 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene dyes (BODIPY). Tetrahedron, 62(21), 5084-5091. doi:10.1016/j.tet.2006.03.036 es_ES
dc.description.references Bañuelos, J., Martín, V., Gómez‐Durán, C. F. A., Córdoba, I. J. A., Peña‐Cabrera, E., García‐Moreno, I., … Arbeloa, Í. L. (2011). New 8‐Amino‐BODIPY Derivatives: Surpassing Laser Dyes at Blue‐Edge Wavelengths. Chemistry – A European Journal, 17(26), 7261-7270. doi:10.1002/chem.201003689 es_ES
dc.description.references Esnal, I., Urías-Benavides, A., Gómez-Durán, C. F. A., Osorio-Martínez, C. A., García-Moreno, I., Costela, A., … Peña-Cabrera, E. (2013). Reaction of Amines with 8-MethylthioBODIPY: Dramatic Optical and Laser Response to Amine Substitution. Chemistry - An Asian Journal, 8(11), 2691-2700. doi:10.1002/asia.201300760 es_ES
dc.description.references Kimura, E., Aoki, S., Koike, T., & Shiro, M. (1997). A Tris(ZnII−1,4,7,10-tetraazacyclododecane) Complex as a New Receptor for Phosphate Dianions in Aqueous Solution. Journal of the American Chemical Society, 119(13), 3068-3076. doi:10.1021/ja9640408 es_ES
dc.description.references Skwierawska, A. M., & Paluszkiewicz, E. (2006). High Yield Synthesis and Preliminary Spectroscopic Study of Mono-N-alkylated Cyclen Derivatives of Salicylic Acid. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 56(3-4), 323-330. doi:10.1007/s10847-006-9101-6 es_ES
dc.description.references 2013 Versions 1.171.36.28 and 1.171.36.21 2013/2012 es_ES
dc.description.references Sheldrick, G. M. (2015). Crystal structure refinement withSHELXL. Acta Crystallographica Section C Structural Chemistry, 71(1), 3-8. doi:10.1107/s2053229614024218 es_ES
dc.description.references Farrugia, L. J. (2012). WinGXandORTEP for Windows: an update. Journal of Applied Crystallography, 45(4), 849-854. doi:10.1107/s0021889812029111 es_ES
dc.description.references 2016 es_ES
dc.description.references Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., … Wood, P. A. (2008). Mercury CSD 2.0– new features for the visualization and investigation of crystal structures. Journal of Applied Crystallography, 41(2), 466-470. doi:10.1107/s0021889807067908 es_ES
dc.description.references Farrugia, L. J. (1997). ORTEP-3 for Windows - a version ofORTEP-III with a Graphical User Interface (GUI). Journal of Applied Crystallography, 30(5), 565-565. doi:10.1107/s0021889897003117 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem