- -

Generating Bessel beams with broad depth-of-field by using phase-only acoustic holograms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Generating Bessel beams with broad depth-of-field by using phase-only acoustic holograms

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jiménez-Gambín, Sergio es_ES
dc.contributor.author Jimenez, Noe es_ES
dc.contributor.author Benlloch Baviera, Jose María es_ES
dc.contributor.author Camarena Femenia, Francisco es_ES
dc.date.accessioned 2020-04-06T08:56:04Z
dc.date.available 2020-04-06T08:56:04Z
dc.date.issued 2019-12-27 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140198
dc.description.abstract [EN] We report zero-th and high-order acoustic Bessel beams with broad depth-of-field generated using acoustic holograms. While the transverse field distribution of Bessel beams generated using traditional passive methods is correctly described by a Bessel function, these methods present a common drawback: the axial distribution of the field is not constant, as required for ideal Bessel beams. In this work, we experimentally, numerically and theoretically report acoustic truncated Bessel beams of flat-intensity along their axis in the ultrasound regime using phase-only holograms. In particular, the beams present a uniform field distribution showing an elongated focal length of about 40 wavelengths, while the transverse width of the beam remains smaller than 0.7 wavelengths. The proposed acoustic holograms were compared with 3D-printed fraxicons, a blazed version of axicons. The performance of both phase-only holograms and fraxicons is studied and we found that both lenses produce Bessel beams in a wide range of frequencies. In addition, high-order Bessel beam were generated. We report first order Bessel beams that show a clear phase dislocation along their axis and a vortex with single topological charge. The proposed method may have potential applications in ultrasonic imaging, biomedical ultrasound and particle manipulation applications using passive lenses. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Economy and Innovation (MINECO) through Project TEC2016-80976-R. NJ and SJ acknowledge financial support from Generalitat Valenciana through grants APOSTD/2017/042, ACIF/2017/045 and GV/2018/11. FC acknowledges financial support from Agencia Valenciana de la Innovacio through grant INNCON00/18/9 and European Regional Development Fund (IDIFEDER/2018/022). es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Bessel beams es_ES
dc.subject Acoustic holograms es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Generating Bessel beams with broad depth-of-field by using phase-only acoustic holograms es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-019-56369-z es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2016-80976-R/ES/CONTROL DE NANOPARTICULAS MAGNETICAS PARA TERAPIA GUIADA POR IMAGEN/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2018%2F011/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F042/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F045/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2FA%2F022/ES/EQUIPOS PARA TECNICAS MIXTAS ELECTROMAGNETICAS-ULTRASONICAS PARA IMAGEN MEDICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AVI//INNCON00%2F18%2F9/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Jiménez-Gambín, S.; Jimenez, N.; Benlloch Baviera, JM.; Camarena Femenia, F. (2019). Generating Bessel beams with broad depth-of-field by using phase-only acoustic holograms. Scientific Reports. 9:1-13. https://doi.org/10.1038/s41598-019-56369-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-019-56369-z es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.relation.pasarela S\400430 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agència Valenciana de la Innovació es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Durnin, J. Exact solutions for nondiffracting beams. i. the scalar theory. J. Opt. Soc. Am. A 4, 651 (1987). es_ES
dc.description.references Durnin, J., Miceli, J. Jr & Eberly, J. Diffraction-free beams. Physical review letters 58, 1499 (1987). es_ES
dc.description.references Chu, X. Analytical study on the self-healing property of Bessel beam. Eur. Phys. J. D 66, 259 (2012). es_ES
dc.description.references McLeod, E., Hopkins, A. B. & Arnold, C. B. Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens. Opt. Lett. 31, 3155 (2006). es_ES
dc.description.references Li, Z., Alici, K. B., Caglayan, H. & Ozbay, E. Generation of an axially asymmetric Bessel-like beam from a metallic subwavelength aperture. Phys. Rev. Lett. 102, 143901 (2009). es_ES
dc.description.references Fahrbach, F. & Rohrbach, A. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media. Nat. Commun. 3, 632 (2011). es_ES
dc.description.references Lu, J.-y, Zou, H. & Greenleaf, J. F. Biomedical ultrasound beam forming. Ultrasound in medicine & biology 20, 403–428 (1994). es_ES
dc.description.references Marston, P. L. Scattering of a Bessel beam by a sphere. J. Acous. Soc. Am. 121, 753 (2007). es_ES
dc.description.references Marston, P. L. Scattering of a Bessel beam by a sphere: Ii. helicoidal case and spherical shell example. The Journal of the Acoustical Society of America 124, 2905–2910 (2008). es_ES
dc.description.references Lu, J. & Greenleaf, F. Ultrasonic nondiffracting transducer for medical imaging. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 37, 438 (1990). es_ES
dc.description.references Lu, J.-Y. & Greenleaf, J. F. Pulse-echo imaging using a nondiffracting beam transducer. Ultrasound in medicine & biology 17, 265–281 (1991). es_ES
dc.description.references Lu, J.-y, Song, T.-K., Kinnick, R. R. & Greenleaf, J. F. In vitro and in vivo real-time imaging with ultrasonic limited diffraction beams. IEEE transactions on medical imaging 12, 819–829 (1993). es_ES
dc.description.references Lu, J.-y, Xu, X.-L., Zou, H. & Greenleaf, J. F. Application of Bessel beam for doppler velocity estimation. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 42, 649–662 (1995). es_ES
dc.description.references Nabavizadeh, A., Greenleaf, J. F., Fatemi, M. & Urban, M. W. Optimized shear wave generation using hybrid beamforming methods. Ultrasound in medicine & biology 40, 188–199 (2014). es_ES
dc.description.references Marston, P. L. Axial radiation force of a Bessel beam on a sphere and direction reversal of the force. The Journal of the Acoustical Society of America 120, 3518–3524 (2006). es_ES
dc.description.references Marston, P. L. Negative axial radiation forces on solid spheres and shells in a Bessel beam. The Journal of the Acoustical Society of America 122, 3162–3165 (2007). es_ES
dc.description.references Marston, P. L. Radiation force of a helicoidal Bessel beam on a sphere. The Journal of the Acoustical Society of America 125, 3539–3547 (2009). es_ES
dc.description.references Thomas, J.-L. & Marchiano, R. Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices. Physical review letters 91, 244302 (2003). es_ES
dc.description.references Volke-Sepúlveda, K., Santillán, A. O. & Boullosa, R. R. Transfer of angular momentum to matter from acoustical vortices in free space. Phys. Rev. Lett. 100, 024302 (2008). es_ES
dc.description.references Zhang, L. & Marston, P. L. Geometrical interpretation of negative radiation forces of acoustical Bessel beams on spheres. Physical Review E 84, 035601 (2011). es_ES
dc.description.references Courtney, C. R. et al. Dexterous manipulation of microparticles using Bessel-function acoustic pressure fields. Applied Physics Letters 102, 123508 (2013). es_ES
dc.description.references Hong, Z., Zhang, J. & Drinkwater, B. W. Observation of orbital angular momentum transfer from Bessel-shaped acoustic vortices to diphasic liquid-microparticle mixtures. Phys. Rev. Lett. 114, 214301 (2015). es_ES
dc.description.references Baresch, D., Thomas, J.-L. &Marchiano, R. Observation of a single-beam gradient force acoustical trap for elastic particles: Acoustical tweezers. Phys. Rev. Lett. 116 (2016). es_ES
dc.description.references Marzo, A., Caleap, M. & Drinkwater, B. W. Acoustic virtual vortices with tunable orbital angular momentum for trapping of mie particles. Phys. Rev. Lett. 120, 044301 (2018). es_ES
dc.description.references Li, Y. et al. Acoustic radiation torque of an acoustic-vortex spanner exerted on axisymmetric objects. Applied Physics Letters 112, 254101 (2018). es_ES
dc.description.references Riaud, A., Baudoin, M., Thomas, J.-L. & Matar, O. B. Cyclones and attractive streaming generated by acoustical vortices. Physical Review E 90, 013008 (2014). es_ES
dc.description.references Shi, C., Dubois, M., Wang, Y. & Zhang, X. High-speed acoustic communication by multiplexing orbital angular momentum. Proceedings of the National Academy of Sciences 114, 7250–7253 (2017). es_ES
dc.description.references Jiang, X., Liang, B., Cheng, J.-C. & Qiu, C.-W. Twisted acoustics: metasurface-enabled multiplexing and demultiplexing. Advanced Materials 30, 1800257 (2018). es_ES
dc.description.references Hsu, D., Margetan, F. & Thompson, D. O. Bessel beam ultrasonic transducer: fabrication method and experimental results. Appl. Phys. Lett. 55, 2066 (1989). es_ES
dc.description.references Campbell, J. A. & Soloway, S. Generation of a nondiffracting beam with frequency-independent beamwidth. The Journal of the Acoustical Society of America 88, 2467–2477 (1990). es_ES
dc.description.references Masuyama, H., Yokoyama, T., Nagai, K. & Mizutani, K. Generation of Bessel beam from equiamplitude-driven annular transducer array consisting of a few elements. Jpn. J. Appl. Phys. 38, 3080 (1999). es_ES
dc.description.references Fjield, T., Fan, X. & Hynynen, K. A parametric study of the concentric-ring transducer design for mri guided ultrasound surgery. J. Acoust. Soc. Am. 100, 1220 (1996). es_ES
dc.description.references Chillara, V. K., Pantea, C. & Sinha, D. N. Low-frequency ultrasonic Bessel-like collimated beam generation from radial modes of piezoelectric transducers. Applied Physics Letters 110, 064101 (2017). es_ES
dc.description.references Burckhardt, C., Hoffmann, H. & Grandchamp, P.-A. Ultrasound axicon: A device for focusing over a large depth. The Journal of the Acoustical Society of America 54, 1628–1630 (1973). es_ES
dc.description.references Foster, F., Patterson, M., Arditi, M. & Hunt, J. The conical scanner: a two transducer ultrasound scatter imaging technique. Ultrasonic imaging 3, 62–82 (1981). es_ES
dc.description.references McLeod, J. H. The axicon: A new type of optical element. J. Opt. Soc. Am. 44, 592 (1954). es_ES
dc.description.references Arlt, J. & Dholakia, K. Generation of high-order Bessel beams by use of an axicon. Optics Communications 177, 297–301 (2000). es_ES
dc.description.references Golub, I. Fresnel axicon. Optics letters 31, 1890–1892 (2006). es_ES
dc.description.references Lirette, R. & Mobley, J. Broadband wave packet dynamics of minimally diffractive ultrasonic fields from axicon and stepped fraxicon lenses. The Journal of the Acoustical Society of America 146, 103–108 (2019). es_ES
dc.description.references Jiménez, N. et al. Acoustic Bessel-like beam formation by an axisymmetric grating. Europhys. Lett. 106, 24005 (2014). es_ES
dc.description.references Xu, Z., Xu, W., Qian, M., Cheng, Q. & Liu, X. A flat acoustic lens to generate a Bessel-like beam. Ultrasonics 80, 66–71 (2017). es_ES
dc.description.references Li, Y., Liang, B., Gu, Z.-M., Zou, X.-Y. & Cheng, J.-C. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Scientific Reports 3, 2546 (2013). es_ES
dc.description.references Nye, J. & Berry, M. Dislocations in wave trains. Proc. R. Soc. London, Ser. A 336, 165–190 (1974). es_ES
dc.description.references Jiménez, N. et al. Formation of high-order acoustic Bessel beams by spiral diffraction gratings. Physical Review E 94, 053004 (2016). es_ES
dc.description.references Wang, T. et al. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure. Applied Physics Letters 109, 123506 (2016). es_ES
dc.description.references Jia, Y.-R., Wei, Q., Wu, D.-J., Xu, Z. & Liu, X.-J. Generation of fractional acoustic vortex with a discrete archimedean spiral structure plate. Applied Physics Letters 112, 173501 (2018). es_ES
dc.description.references Jiménez, N., Romero-Garca, V., Garca-Raffi, L. M., Camarena, F. & Staliunas, K. Sharp acoustic vortex focusing by fresnel-spiral zone plates. Applied Physics Letters 112, 204101 (2018). es_ES
dc.description.references Baudoin, M. et al. Folding a focalized acoustical vortex on a flat holographic transducer: miniaturized selective acoustical tweezers. Science advances 5, eaav1967 (2019). es_ES
dc.description.references Muelas-Hurtado, R. D., Ealo, J. L., Pazos-Ospina, J. F. & Volke-Sepúlveda, K. Acoustic analysis of a broadband spiral source for the simultaneous generation of multiple Bessel vortices in air. The Journal of the Acoustical Society of America 144, 3252–3261 (2018). es_ES
dc.description.references Muelas-Hurtado, R. D., Ealo, J. L., Pazos-Ospina, J. F. & Volke-Sepúlveda, K. Generation of multiple vortex beam by means of active diffraction gratings. Applied Physics Letters 112, 084101 (2018). es_ES
dc.description.references Wunenburger, R., Lozano, J. I. V. & Brasselet, E. Acoustic orbital angular momentum transfer to matter by chiral scattering. New Journal of Physics 17, 103022 (2015). es_ES
dc.description.references Terzi, M., Tsysar, S., Yuldashev, P., Karzova, M. & Sapozhnikov, O. Generation of a vortex ultrasonic beam with a phase plate with an angular dependence of the thickness. Moscow University Physics Bulletin 72, 61–67 (2017). es_ES
dc.description.references Hefner, B. T. & Marston, P. L. An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems. Jour. Acous. Soc. Am. 106, 3313–3316 (1999). es_ES
dc.description.references Ealo, J. L., Prieto, J. C. & Seco, F. Airborne ultrasonic vortex generation using flexible ferroelectrets. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 58, 1651–1657 (2011). es_ES
dc.description.references Naify, C. J. et al. Generation of topologically diverse acoustic vortex beams using a compact metamaterial aperture. Applied Physics Letters 108, 223503 (2016). es_ES
dc.description.references Ye, L. et al. Making sound vortices by metasurfaces. AIP Advances 6, 085007 (2016). es_ES
dc.description.references Jiang, X., Li, Y., Liang, B., Cheng, J.-C. & Zhang, L. Convert acoustic resonances to orbital angular momentum. Physical review letters 117, 034301 (2016). es_ES
dc.description.references Esfahlani, H., Lissek, H. & Mosig, J. R. Generation of acoustic helical wavefronts using metasurfaces. Physical Review B 95, 024312 (2017). es_ES
dc.description.references Jiménez-Gambn, S., Jiménez, N., Benlloch, J. M. & Camarena, F. Holograms to focus arbitrary ultrasonic fields through the skull. Physical Review Applied 12, 014016 (2019). es_ES
dc.description.references Maimbourg, G., Houdouin, A., Deffieux, T., Tanter, M. & Aubry, J.-F. 3d-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers. Physics in Medicine & Biology 63, 025026 (2018). es_ES
dc.description.references Ferri, M. et al. On the evaluation of the suitability of the materials used to 3d print holographic acoustic lenses to correct transcranial focused ultrasound aberrations. Polymers 11, 1521 (2019). es_ES
dc.description.references Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518 (2016). es_ES
dc.description.references Brown, M. D., Cox, B. T. & Treeby, B. E. Design of multi-frequency acoustic kinoforms. Applied Physics Letters 111, 244101 (2017). es_ES
dc.description.references Brown, M., Nikitichev, D., Treeby, B. & Cox, B. Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles. Applied Physics Letters 110, 094102 (2017). es_ES
dc.description.references Zhu, Y. et al. Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase. Nature communications 9, 1632 (2018). es_ES
dc.description.references Brown, M. D. Phase and amplitude modulation with acoustic holograms. Applied Physics Letters 115, 053701 (2019). es_ES
dc.description.references Jiménez, N., Romero-Garca, V., Pagneux, V. & Groby, J.-P. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Physical Review B 95, 014205 (2017). es_ES
dc.description.references Tsang, P. W. M. & Poon, T.-C. Novel method for converting digital fresnel hologram to phase-only hologram based on bidirectional error diffusion. Optics Express 21, 23680–23686 (2013). es_ES
dc.description.references Soret, J. Ueber die durch kreisgitter erzeugten diffractionsphänomene. Annalen der Physik 232, 99–113 (1875). es_ES
dc.description.references Turunen, J., Vasara, A. & Friberg, A. T. Holographic generation of diffraction-free beams. Applied Optics 27, 3959–3962 (1988). es_ES
dc.description.references Vasara, A., Turunen, J. & Friberg, A. T. Realization of general nondiffracting beams with computer-generated holograms. JOSA A 6, 1748–1754 (1989). es_ES
dc.description.references Cunningham, K. B. & Hamilton, M. F. Bessel beams of finite amplitude in absorbing fluids. J. Acous. Soc. Am. 108, 519 (2000). es_ES
dc.description.references Ding, D. & Y. Lu, J. Higher-order harmonics of limited diffraction Bessel beams. J. Acous. Soc. Am. 107, 1212 (2000). es_ES
dc.description.references Skeldon, K., Wilson, C., Edgar, M. & Padgett, M. An acoustic spanner and its associated rotational Doppler shift. New J. Phys. 10, 013018 (2008). es_ES
dc.description.references Wu, J. Acoustical tweezers. J. Acoust. Soc. Am. 89, 2140–2143 (1991). es_ES
dc.description.references Zhang, L. & Marston, P. L. Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects. Physical Review E 84, 065601 (2011). es_ES
dc.description.references Yoon, C., Kang, B. J., Lee, C., Kim, H. H. & Shung, K. K. Multi-particle trapping and manipulation by a high-frequency array transducer. Appl. Phys. Lett. 105, 214103 (2014). es_ES
dc.description.references Marzo, A. et al. Holographic acoustic elements for manipulation of levitated objects. Nat. Commun. 6 (2015). es_ES
dc.description.references Blackstock, D. T. Fundamentals of physical acoustics (John Wiley & Sons, 2000). es_ES
dc.description.references Treeby, B. E. & Cox, B. Modeling power law absorption and dispersion for acoustic propagation using the fractional laplacian. The Journal of the Acoustical Society of America 127, 2741–2748 (2010). es_ES
dc.description.references Treeby, B. E., Jaros, J., Rendell, A. P. & Cox, B. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method. The Journal of the Acoustical Society of America 131, 4324–4336 (2012). es_ES
dc.description.references Jiménez, N. et al. Time-domain simulation of ultrasound propagation in a tissue-like medium based on the resolution of the nonlinear acoustic constitutive relations. Acta Acustica united with Acustica 102, 876–892 (2016). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem