- -

Improving the approximation of the first and second order statistics of the response stochastic process to the random Legendre differential equation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improving the approximation of the first and second order statistics of the response stochastic process to the random Legendre differential equation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calatayud-Gregori, Julia es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Jornet-Sanz, Marc es_ES
dc.date.accessioned 2020-04-06T08:56:10Z
dc.date.available 2020-04-06T08:56:10Z
dc.date.issued 2019-06 es_ES
dc.identifier.issn 1660-5446 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140202
dc.description.abstract [EN] In this paper, we deal with uncertainty quantification for the random Legendre differential equation, with input coefficient A and initial conditions X-0 and X-1. In a previous study (Calbo et al. in Comput Math Appl 61(9):2782-2792, 2011), a mean square convergent power series solution on (-1/e, 1/e) was constructed, under the assumptions of mean fourth integrability of X-0 and X-1, independence, and at most exponential growth of the absolute moments of A. In this paper, we relax these conditions to construct an L-p solution (1 <= p <= infinity) to the random Legendre differential equation on the whole domain (-1, 1), as in its deterministic counterpart. Our hypotheses assume no independence and less integrability of X-0 and X-1. Moreover, the growth condition on the moments of A is characterized by the boundedness of A, which simplifies the proofs significantly. We also provide approximations of the expectation and variance of the response process. The numerical experiments show the wide applicability of our findings. A comparison with Monte Carlo simulations and gPC expansions is performed. es_ES
dc.description.sponsorship This work has been supported by the Spanish Ministerio de Economia y Competitividad Grant MTM2017-89664-P. Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Mediterranean Journal of Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Random Legendre differential equation es_ES
dc.subject Random power series es_ES
dc.subject Mean square calculus es_ES
dc.subject Uncertainty quantification es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Improving the approximation of the first and second order statistics of the response stochastic process to the random Legendre differential equation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00009-019-1338-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2019). Improving the approximation of the first and second order statistics of the response stochastic process to the random Legendre differential equation. Mediterranean Journal of Mathematics. 16(3):1-14. https://doi.org/10.1007/s00009-019-1338-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00009-019-1338-6 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\374738 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Soong, T.T.: Random Differential Equations in Science and Engineering. Academic Press, New York (1973) es_ES
dc.description.references Strand, J.L.: Random ordinary differential equations. J. Differ. Equ. 7(3), 538–553 (1970) es_ES
dc.description.references Smith, R.C.: Uncertainty quantification. Theory, implementation, and application. SIAM Comput. Sci. Eng. New York (2013) ISBN 9781611973211 es_ES
dc.description.references Fishman, G.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, Berlin (2013) es_ES
dc.description.references Cortés, J.-C., Romero, J.-V., Roselló, M.-D., Santonja, F.-J., Villanueva, R.-J.: Solving continuous models with dependent uncertainty: a computational approach. Abstr. Appl. Anal. 2013, 983839 (2013). https://doi.org/10.1155/2013/983839 es_ES
dc.description.references Xiu, D.: Numerical Methods for Stochastic Computations. A Spectral Method Approach. Cambridge Texts in Applied Mathematics. Princeton University Press, New York (2010) es_ES
dc.description.references El-Tawil, M.A.: The approximate solutions of some stochastic differential equations using transformations. Appl. Math. Comput. 164(1), 167–178 (2005) es_ES
dc.description.references Cortés, J.-C., Sevilla-Peris, P., Jódar, L.: Constructing approximate diffusion processes with uncertain data. Math. Comput. Simul. 73(1–4), 125–132 (2006) es_ES
dc.description.references Cortés, J.-C., Jódar, L., Villafuerte, L., Villanueva, R.-J.: Computing mean square approximations of random diffusion models with source term. Math. Comput. Simul. 76(1–3), 44–48 (2007) es_ES
dc.description.references Khodabin, M., Maleknejad, K., Rostami, M., Nouri, M.: Numerical solution of stochastic differential equations by second order Runge–Kutta methods. Math. Comput. Model. 53(9–10), 1910–1920 (2011) es_ES
dc.description.references Nouri, K., Ranjbar, H.: Mean square convergence of the numerical solution of random differential equations. Mediterran. J. Math. 12(3), 1123–1140 (2015) es_ES
dc.description.references Nouri, N.: Study on stochastic differential equations via modified Adomian decomposition method. U.P.B. Sci. Bull. Ser. A 78(1), 81–90 (2016) es_ES
dc.description.references Khodabin, M., Rostami, M.: Mean square numerical solution of stochastic differential equations by fourth order Runge–Kutta method and its application in the electric circuits with noise. Adv. Differ. Equ. 623, 1–19 (2015) es_ES
dc.description.references Díaz-Infante, S., Jerez, S.: Convergence and asymptotic stability of the explicit Steklov method for stochastic differential equations. J. Comput. Appl. Math. 291(1), 36–47 (2016) es_ES
dc.description.references Soheili, Ali R, Toutounian, F., Soleymani, F.: A fast convergent numerical method for matrix sign function with application in SDEs (Stochastic Differential Equations). J. Comput. Appl. Math. 282, 167–178 (2015) es_ES
dc.description.references Øksendal, B.: Stochastic Differential Equations. Springer, Berlin (2003) es_ES
dc.description.references Villafuerte, L., Braumann, C.A., Cortés, J.-C., Jódar, L.: Random differential operational calculus: theory and applications. Comput. Math. Appl. 59(1), 115–125 (2010) es_ES
dc.description.references Licea, J., Villafuerte, L., Chen-Charpentier, B.M.: Analytic and numerical solutions of a Riccati differential equation with random coefficients. J. Comput. Appl. Math. 309(1), 208–219 (2013) es_ES
dc.description.references Cortés, J.-C., Jódar, L., Camacho, J., Villafuerte, L.: Random Airy type differential equations: mean square exact and numerical solutions. Comput. Math. Appl. 60(5), 1237–1244 (2010) es_ES
dc.description.references Calbo, G., Cortés, J.-C., Jódar, L.: Random Hermite differential equations: mean square power series solutions and statistical properties. Appl. Math. Comput. 218(7), 3654–3666 (2011) es_ES
dc.description.references Calbo, G., Cortés, J.-C., Jódar, L., Villafuerte, L.: Solving the random Legendre differential equation: mean square power series solution and its statistical functions. Comput. Math. Appl. 61(9), 2782–2792 (2011) es_ES
dc.description.references Cortés, J.C., Jódar, L., Villafuerte, L.: Mean square solution of Bessel differential equation with uncertainties. J. Comput. Appl. Math. 309(1), 383–395 (2017) es_ES
dc.description.references Golmankhaneh, A.K., Porghoveh, N.A., Baleanu, D.: Mean square solutions of second-order random differential equations by using homotopy analysis method. Roman. Rep. Phys. 65(2), 350–362 (2013) es_ES
dc.description.references Khudair, A.K., Ameen, A.A., Khalaf, S.L.: Mean square solutions of second-order random differential equations by using Adomian decomposition method. Appl. Math. Sci. 51(5), 2521–2535 (2011) es_ES
dc.description.references Khudair, A.K., Haddad, S.A.M., Khalaf, S.L.: Mean square solutions of second-order random differential equations by using the differential transformation method. Open J. Appl. Sci. 6, 287–297 (2016) es_ES
dc.description.references Norman, L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol. 1. Wiley, Oxford (1994) es_ES
dc.description.references Ernst, O.G., Mugler, A., Starkloff, H.-J., Ullmann, E.: On the convergence of generalized polynomial chaos expansions. ESAIM Math. Modell. Num. Anal. 46(2), 317–339 (2012) es_ES
dc.description.references Shi, W., Zhang, C.: Error analysis of generalized polynomial chaos for nonlinear random ordinary differential equations. Appl. Num. Math. 62(12), 1954–1964 (2012) es_ES
dc.description.references Calatayud, J., Cortés, J.-C., Jornet, M.: On the convergence of adaptive gPC for non-linear random difference equations: theoretical analysis and some practical recommendations. J. Nonlinear Sci. Appl. 11(9), 1077–1084 (2018) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem