Mostrar el registro sencillo del ítem
dc.contributor.author | Bustamante, Alexander | es_ES |
dc.contributor.author | Sebastiá Tarín, Laura | es_ES |
dc.contributor.author | Onaindia De La Rivaherrera, Eva | es_ES |
dc.date.accessioned | 2020-04-06T08:56:12Z | |
dc.date.available | 2020-04-06T08:56:12Z | |
dc.date.issued | 2019-06-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140203 | |
dc.description.abstract | [EN] Promoting a tourist destination requires uncovering travel patterns and destination choices, identifying the profile of visitors and analyzing attitudes and preferences of visitors for the city. To this end, tourism-related data are an invaluable asset to understand tourism behaviour, obtain statistical records and support decision-making for business around tourism. In this work, we study the behaviour of tourists visiting top attractions of a city in relation to the tourist influx to restaurants around the attractions. We propose to undertake this analysis by retrieving information posted by visitors in a social network and using an open access map service to locate the tweets in a influence area of the city. Additionally, we present a pattern recognition based technique to differentiate visitors and locals from the collected data from the social network. We apply our study to the city of Valencia in Spain and Berlin in Germany. The results show that, while in Valencia the most frequented restaurants are located near top attractions of the city, in Berlin, it is usually the case that the most visited restaurants are far away from the relevant attractions of the city. The conclusions from this study can be very insightful for destination marketers. | es_ES |
dc.description.sponsorship | This work is supported by the Spanish MINECO project TIN2017-88476-C2-1-R. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Urban tourism | es_ES |
dc.subject | Social networks | es_ES |
dc.subject | GIS | es_ES |
dc.subject | Business intelligence | es_ES |
dc.subject | Tourism behaviour | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Can Tourist Attractions Boost Other Activities Around? A Data Analysis through Social Networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s19112612 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-88476-C2-1-R/ES/RECONOCIMIENTO DE ACTIVIDADES Y PLANIFICACION AUTOMATICA PARA EL DISEÑO DE ASISTENTES INTELIGENTES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Bustamante, A.; Sebastiá Tarín, L.; Onaindia De La Rivaherrera, E. (2019). Can Tourist Attractions Boost Other Activities Around? A Data Analysis through Social Networks. Sensors. 19(11):1-25. https://doi.org/10.3390/s19112612 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s19112612 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 25 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 11 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.relation.pasarela | S\389125 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Travel and Tourism Competitiveness Report 2017http://reports.weforum.org/travel-and-tourism-competitiveness-report-2017/ | es_ES |
dc.description.references | OECD Datahttps://data.oecd.org/ | es_ES |
dc.description.references | Travel &Tourism: Economic Impact 2019 Worldhttps://www.wttc.org/-/media/files/reports/economic-impact-research/regions-2019/world2019.pdf | es_ES |
dc.description.references | Cohen, S. A., Prayag, G., & Moital, M. (2013). Consumer behaviour in tourism: Concepts, influences and opportunities. Current Issues in Tourism, 17(10), 872-909. doi:10.1080/13683500.2013.850064 | es_ES |
dc.description.references | Yoo, C.-K., Yoon, D., & Park, E. (2018). Tourist motivation: an integral approach to destination choices. Tourism Review, 73(2), 169-185. doi:10.1108/tr-04-2017-0085 | es_ES |
dc.description.references | Cohen, E. (1979). A Phenomenology of Tourist Experiences. Sociology, 13(2), 179-201. doi:10.1177/003803857901300203 | es_ES |
dc.description.references | Decrop, A., & Snelders, D. (2005). A grounded typology of vacation decision-making. Tourism Management, 26(2), 121-132. doi:10.1016/j.tourman.2003.11.011 | es_ES |
dc.description.references | Servidio, R., & Ruffolo, I. (2016). Exploring the relationship between emotions and memorable tourism experiences through narratives. Tourism Management Perspectives, 20, 151-160. doi:10.1016/j.tmp.2016.07.010 | es_ES |
dc.description.references | Prayag, G., Hosany, S., Muskat, B., & Del Chiappa, G. (2016). Understanding the Relationships between Tourists’ Emotional Experiences, Perceived Overall Image, Satisfaction, and Intention to Recommend. Journal of Travel Research, 56(1), 41-54. doi:10.1177/0047287515620567 | es_ES |
dc.description.references | Valls, J.-F., Sureda, J., & Valls-Tuñon, G. (2014). Attractiveness Analysis of European Tourist Cities. Journal of Travel & Tourism Marketing, 31(2), 178-194. doi:10.1080/10548408.2014.873310 | es_ES |
dc.description.references | García-Palomares, J. C., Gutiérrez, J., & Mínguez, C. (2015). Identification of tourist hot spots based on social networks: A comparative analysis of European metropolises using photo-sharing services and GIS. Applied Geography, 63, 408-417. doi:10.1016/j.apgeog.2015.08.002 | es_ES |
dc.description.references | Lu, Y., Wu, H., Liu, X., & Chen, P. (2019). TourSense: A Framework for Tourist Identification and Analytics Using Transport Data. IEEE Transactions on Knowledge and Data Engineering, 31(12), 2407-2422. doi:10.1109/tkde.2019.2894131 | es_ES |
dc.description.references | Buhalis, D. (2000). Marketing the competitive destination of the future. Tourism Management, 21(1), 97-116. doi:10.1016/s0261-5177(99)00095-3 | es_ES |
dc.description.references | Indicators for Measuring Competitiveness in Tourism: A Guidance Documenthttp://dx.doi.org/10.1787/5k47t9q2t923-en | es_ES |
dc.description.references | Longhi, C., Titz, J.-B., & Viallis, L. (2014). Open Data: Challenges and Opportunities for the Tourism Industry. Tourism Management, Marketing, and Development, 57-76. doi:10.1057/9781137354358_4 | es_ES |
dc.description.references | Open Data in Tourismhttps://www.europeandataportal.eu/en/highlights/open-data-tourism | es_ES |
dc.description.references | Cox, C., Burgess, S., Sellitto, C., & Buultjens, J. (2009). The Role of User-Generated Content in Tourists’ Travel Planning Behavior. Journal of Hospitality Marketing & Management, 18(8), 743-764. doi:10.1080/19368620903235753 | es_ES |
dc.description.references | Lu, W., & Stepchenkova, S. (2014). User-Generated Content as a Research Mode in Tourism and Hospitality Applications: Topics, Methods, and Software. Journal of Hospitality Marketing & Management, 24(2), 119-154. doi:10.1080/19368623.2014.907758 | es_ES |
dc.description.references | Pantano, E., Priporas, C.-V., & Stylos, N. (2017). ‘You will like it!’ using open data to predict tourists’ response to a tourist attraction. Tourism Management, 60, 430-438. doi:10.1016/j.tourman.2016.12.020 | es_ES |
dc.description.references | Hawelka, B., Sitko, I., Beinat, E., Sobolevsky, S., Kazakopoulos, P., & Ratti, C. (2014). Geo-located Twitter as proxy for global mobility patterns. Cartography and Geographic Information Science, 41(3), 260-271. doi:10.1080/15230406.2014.890072 | es_ES |
dc.description.references | Girardin, F., Calabrese, F., Fiore, F. D., Ratti, C., & Blat, J. (2008). Digital Footprinting: Uncovering Tourists with User-Generated Content. IEEE Pervasive Computing, 7(4), 36-43. doi:10.1109/mprv.2008.71 | es_ES |
dc.description.references | Alivand, M., & Hochmair, H. H. (2016). Spatiotemporal analysis of photo contribution patterns to Panoramio and Flickr. Cartography and Geographic Information Science, 44(2), 170-184. doi:10.1080/15230406.2016.1211489 | es_ES |
dc.description.references | Bassolas, A., Lenormand, M., Tugores, A., Gonçalves, B., & Ramasco, J. J. (2016). Touristic site attractiveness seen through Twitter. EPJ Data Science, 5(1). doi:10.1140/epjds/s13688-016-0073-5 | es_ES |
dc.description.references | Mariani, M., Baggio, R., Fuchs, M., & Höepken, W. (2018). Business intelligence and big data in hospitality and tourism: a systematic literature review. International Journal of Contemporary Hospitality Management, 30(12), 3514-3554. doi:10.1108/ijchm-07-2017-0461 | es_ES |
dc.description.references | Francalanci, C., & Hussain, A. (2015). Discovering social influencers with network visualization: evidence from the tourism domain. Information Technology & Tourism, 16(1), 103-125. doi:10.1007/s40558-015-0030-3 | es_ES |
dc.description.references | Williams, N. L., Inversini, A., Ferdinand, N., & Buhalis, D. (2017). Destination eWOM: A macro and meso network approach? Annals of Tourism Research, 64, 87-101. doi:10.1016/j.annals.2017.02.007 | es_ES |
dc.description.references | Salas-Olmedo, M. H., Moya-Gómez, B., García-Palomares, J. C., & Gutiérrez, J. (2018). Tourists’ digital footprint in cities: Comparing Big Data sources. Tourism Management, 66, 13-25. doi:10.1016/j.tourman.2017.11.001 | es_ES |
dc.description.references | Padilla, J. J., Kavak, H., Lynch, C. J., Gore, R. J., & Diallo, S. Y. (2018). Temporal and spatiotemporal investigation of tourist attraction visit sentiment on Twitter. PLOS ONE, 13(6), e0198857. doi:10.1371/journal.pone.0198857 | es_ES |
dc.description.references | Maeda, T., Yoshida, M., Toriumi, F., & Ohashi, H. (2018). Extraction of Tourist Destinations and Comparative Analysis of Preferences Between Foreign Tourists and Domestic Tourists on the Basis of Geotagged Social Media Data. ISPRS International Journal of Geo-Information, 7(3), 99. doi:10.3390/ijgi7030099 | es_ES |
dc.description.references | Wöber, K. W. (2003). Information supply in tourism management by marketing decision support systems. Tourism Management, 24(3), 241-255. doi:10.1016/s0261-5177(02)00071-7 | es_ES |
dc.description.references | Sabou, M., Onder, I., Brasoveanu, A. M. P., & Scharl, A. (2016). Towards cross-domain data analytics in tourism: a linked data based approach. Information Technology & Tourism, 16(1), 71-101. doi:10.1007/s40558-015-0049-5 | es_ES |
dc.description.references | Adamiak, C., Szyda, B., Dubownik, A., & García-Álvarez, D. (2019). Airbnb Offer in Spain—Spatial Analysis of the Pattern and Determinants of Its Distribution. ISPRS International Journal of Geo-Information, 8(3), 155. doi:10.3390/ijgi8030155 | es_ES |
dc.description.references | Padron Municipal de Habitantes [Statistical Report: Residents in Valencia in 2018]https://bit.ly/2JnNNEs | es_ES |