- -

Can Tourist Attractions Boost Other Activities Around? A Data Analysis through Social Networks

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Can Tourist Attractions Boost Other Activities Around? A Data Analysis through Social Networks

Show simple item record

Files in this item

dc.contributor.author Bustamante, Alexander es_ES
dc.contributor.author Sebastiá Tarín, Laura es_ES
dc.contributor.author Onaindia De La Rivaherrera, Eva es_ES
dc.date.accessioned 2020-04-06T08:56:12Z
dc.date.available 2020-04-06T08:56:12Z
dc.date.issued 2019-06-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140203
dc.description.abstract [EN] Promoting a tourist destination requires uncovering travel patterns and destination choices, identifying the profile of visitors and analyzing attitudes and preferences of visitors for the city. To this end, tourism-related data are an invaluable asset to understand tourism behaviour, obtain statistical records and support decision-making for business around tourism. In this work, we study the behaviour of tourists visiting top attractions of a city in relation to the tourist influx to restaurants around the attractions. We propose to undertake this analysis by retrieving information posted by visitors in a social network and using an open access map service to locate the tweets in a influence area of the city. Additionally, we present a pattern recognition based technique to differentiate visitors and locals from the collected data from the social network. We apply our study to the city of Valencia in Spain and Berlin in Germany. The results show that, while in Valencia the most frequented restaurants are located near top attractions of the city, in Berlin, it is usually the case that the most visited restaurants are far away from the relevant attractions of the city. The conclusions from this study can be very insightful for destination marketers. es_ES
dc.description.sponsorship This work is supported by the Spanish MINECO project TIN2017-88476-C2-1-R. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Urban tourism es_ES
dc.subject Social networks es_ES
dc.subject GIS es_ES
dc.subject Business intelligence es_ES
dc.subject Tourism behaviour es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Can Tourist Attractions Boost Other Activities Around? A Data Analysis through Social Networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s19112612 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-88476-C2-1-R/ES/RECONOCIMIENTO DE ACTIVIDADES Y PLANIFICACION AUTOMATICA PARA EL DISEÑO DE ASISTENTES INTELIGENTES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Bustamante, A.; Sebastiá Tarín, L.; Onaindia De La Rivaherrera, E. (2019). Can Tourist Attractions Boost Other Activities Around? A Data Analysis through Social Networks. Sensors. 19(11):1-25. https://doi.org/10.3390/s19112612 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s19112612 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 25 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.relation.pasarela S\389125 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Travel and Tourism Competitiveness Report 2017http://reports.weforum.org/travel-and-tourism-competitiveness-report-2017/ es_ES
dc.description.references OECD Datahttps://data.oecd.org/ es_ES
dc.description.references Travel &Tourism: Economic Impact 2019 Worldhttps://www.wttc.org/-/media/files/reports/economic-impact-research/regions-2019/world2019.pdf es_ES
dc.description.references Cohen, S. A., Prayag, G., & Moital, M. (2013). Consumer behaviour in tourism: Concepts, influences and opportunities. Current Issues in Tourism, 17(10), 872-909. doi:10.1080/13683500.2013.850064 es_ES
dc.description.references Yoo, C.-K., Yoon, D., & Park, E. (2018). Tourist motivation: an integral approach to destination choices. Tourism Review, 73(2), 169-185. doi:10.1108/tr-04-2017-0085 es_ES
dc.description.references Cohen, E. (1979). A Phenomenology of Tourist Experiences. Sociology, 13(2), 179-201. doi:10.1177/003803857901300203 es_ES
dc.description.references Decrop, A., & Snelders, D. (2005). A grounded typology of vacation decision-making. Tourism Management, 26(2), 121-132. doi:10.1016/j.tourman.2003.11.011 es_ES
dc.description.references Servidio, R., & Ruffolo, I. (2016). Exploring the relationship between emotions and memorable tourism experiences through narratives. Tourism Management Perspectives, 20, 151-160. doi:10.1016/j.tmp.2016.07.010 es_ES
dc.description.references Prayag, G., Hosany, S., Muskat, B., & Del Chiappa, G. (2016). Understanding the Relationships between Tourists’ Emotional Experiences, Perceived Overall Image, Satisfaction, and Intention to Recommend. Journal of Travel Research, 56(1), 41-54. doi:10.1177/0047287515620567 es_ES
dc.description.references Valls, J.-F., Sureda, J., & Valls-Tuñon, G. (2014). Attractiveness Analysis of European Tourist Cities. Journal of Travel & Tourism Marketing, 31(2), 178-194. doi:10.1080/10548408.2014.873310 es_ES
dc.description.references García-Palomares, J. C., Gutiérrez, J., & Mínguez, C. (2015). Identification of tourist hot spots based on social networks: A comparative analysis of European metropolises using photo-sharing services and GIS. Applied Geography, 63, 408-417. doi:10.1016/j.apgeog.2015.08.002 es_ES
dc.description.references Lu, Y., Wu, H., Liu, X., & Chen, P. (2019). TourSense: A Framework for Tourist Identification and Analytics Using Transport Data. IEEE Transactions on Knowledge and Data Engineering, 31(12), 2407-2422. doi:10.1109/tkde.2019.2894131 es_ES
dc.description.references Buhalis, D. (2000). Marketing the competitive destination of the future. Tourism Management, 21(1), 97-116. doi:10.1016/s0261-5177(99)00095-3 es_ES
dc.description.references Indicators for Measuring Competitiveness in Tourism: A Guidance Documenthttp://dx.doi.org/10.1787/5k47t9q2t923-en es_ES
dc.description.references Longhi, C., Titz, J.-B., & Viallis, L. (2014). Open Data: Challenges and Opportunities for the Tourism Industry. Tourism Management, Marketing, and Development, 57-76. doi:10.1057/9781137354358_4 es_ES
dc.description.references Open Data in Tourismhttps://www.europeandataportal.eu/en/highlights/open-data-tourism es_ES
dc.description.references Cox, C., Burgess, S., Sellitto, C., & Buultjens, J. (2009). The Role of User-Generated Content in Tourists’ Travel Planning Behavior. Journal of Hospitality Marketing & Management, 18(8), 743-764. doi:10.1080/19368620903235753 es_ES
dc.description.references Lu, W., & Stepchenkova, S. (2014). User-Generated Content as a Research Mode in Tourism and Hospitality Applications: Topics, Methods, and Software. Journal of Hospitality Marketing & Management, 24(2), 119-154. doi:10.1080/19368623.2014.907758 es_ES
dc.description.references Pantano, E., Priporas, C.-V., & Stylos, N. (2017). ‘You will like it!’ using open data to predict tourists’ response to a tourist attraction. Tourism Management, 60, 430-438. doi:10.1016/j.tourman.2016.12.020 es_ES
dc.description.references Hawelka, B., Sitko, I., Beinat, E., Sobolevsky, S., Kazakopoulos, P., & Ratti, C. (2014). Geo-located Twitter as proxy for global mobility patterns. Cartography and Geographic Information Science, 41(3), 260-271. doi:10.1080/15230406.2014.890072 es_ES
dc.description.references Girardin, F., Calabrese, F., Fiore, F. D., Ratti, C., & Blat, J. (2008). Digital Footprinting: Uncovering Tourists with User-Generated Content. IEEE Pervasive Computing, 7(4), 36-43. doi:10.1109/mprv.2008.71 es_ES
dc.description.references Alivand, M., & Hochmair, H. H. (2016). Spatiotemporal analysis of photo contribution patterns to Panoramio and Flickr. Cartography and Geographic Information Science, 44(2), 170-184. doi:10.1080/15230406.2016.1211489 es_ES
dc.description.references Bassolas, A., Lenormand, M., Tugores, A., Gonçalves, B., & Ramasco, J. J. (2016). Touristic site attractiveness seen through Twitter. EPJ Data Science, 5(1). doi:10.1140/epjds/s13688-016-0073-5 es_ES
dc.description.references Mariani, M., Baggio, R., Fuchs, M., & Höepken, W. (2018). Business intelligence and big data in hospitality and tourism: a systematic literature review. International Journal of Contemporary Hospitality Management, 30(12), 3514-3554. doi:10.1108/ijchm-07-2017-0461 es_ES
dc.description.references Francalanci, C., & Hussain, A. (2015). Discovering social influencers with network visualization: evidence from the tourism domain. Information Technology & Tourism, 16(1), 103-125. doi:10.1007/s40558-015-0030-3 es_ES
dc.description.references Williams, N. L., Inversini, A., Ferdinand, N., & Buhalis, D. (2017). Destination eWOM: A macro and meso network approach? Annals of Tourism Research, 64, 87-101. doi:10.1016/j.annals.2017.02.007 es_ES
dc.description.references Salas-Olmedo, M. H., Moya-Gómez, B., García-Palomares, J. C., & Gutiérrez, J. (2018). Tourists’ digital footprint in cities: Comparing Big Data sources. Tourism Management, 66, 13-25. doi:10.1016/j.tourman.2017.11.001 es_ES
dc.description.references Padilla, J. J., Kavak, H., Lynch, C. J., Gore, R. J., & Diallo, S. Y. (2018). Temporal and spatiotemporal investigation of tourist attraction visit sentiment on Twitter. PLOS ONE, 13(6), e0198857. doi:10.1371/journal.pone.0198857 es_ES
dc.description.references Maeda, T., Yoshida, M., Toriumi, F., & Ohashi, H. (2018). Extraction of Tourist Destinations and Comparative Analysis of Preferences Between Foreign Tourists and Domestic Tourists on the Basis of Geotagged Social Media Data. ISPRS International Journal of Geo-Information, 7(3), 99. doi:10.3390/ijgi7030099 es_ES
dc.description.references Wöber, K. W. (2003). Information supply in tourism management by marketing decision support systems. Tourism Management, 24(3), 241-255. doi:10.1016/s0261-5177(02)00071-7 es_ES
dc.description.references Sabou, M., Onder, I., Brasoveanu, A. M. P., & Scharl, A. (2016). Towards cross-domain data analytics in tourism: a linked data based approach. Information Technology & Tourism, 16(1), 71-101. doi:10.1007/s40558-015-0049-5 es_ES
dc.description.references Adamiak, C., Szyda, B., Dubownik, A., & García-Álvarez, D. (2019). Airbnb Offer in Spain—Spatial Analysis of the Pattern and Determinants of Its Distribution. ISPRS International Journal of Geo-Information, 8(3), 155. doi:10.3390/ijgi8030155 es_ES
dc.description.references Padron Municipal de Habitantes [Statistical Report: Residents in Valencia in 2018]https://bit.ly/2JnNNEs es_ES


This item appears in the following Collection(s)

Show simple item record