- -

Valorization of Moringa oleifera seed husk as biosorbent: isotherm and kinetics studies to remove cadmium and copper from aqueous solutions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Valorization of Moringa oleifera seed husk as biosorbent: isotherm and kinetics studies to remove cadmium and copper from aqueous solutions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Fayos, Beatriz es_ES
dc.contributor.author Arnal, José Miguel es_ES
dc.contributor.author Piris, J. es_ES
dc.contributor.author Sancho, M. es_ES
dc.date.accessioned 2020-04-06T08:56:15Z
dc.date.available 2020-04-06T08:56:15Z
dc.date.issued 2016 es_ES
dc.identifier.issn 1944-3994 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140205
dc.description.abstract [EN] Moringa oleifera is a plant with multiple uses. Among them, the best-known use of seeds is as natural coagulant for the clarification of turbid water. The process of preparation of the natural coagulant generates different wastes including Moringa seed husk. This work studies the use of this waste as biosorbent for cadmium and copper removal. Adsorption studies were performed using batch test and the effects of contact time, temperature, pH, concentration of metal, and concentration of adsorbent were also analyzed. We have also studied the biosorbent structure through SEM and EDX. Experimental results were analyzed using Langmuir and Freundlich isotherms and the adsorption kinetics by pseudo-first and pseudo-second-order equations. The experimental results showed that the maximum removal of Cu and Cd was observed at pH 6, 1h contact time, 1mg/L initial concentration of Cd and 2mg/L of Cu, and 1g of biosorbent added. The percentages of metal removal were around 90% for both metals studied. Results indicate that the data of Cu and Cd adsorption onto Moringa seed husk were best fit by the Langmuir model. The adsorption capacity (q(m)) calculated from the Langmuir isotherm was 13.1mgg(-1) for both metals, higher than observed for other biosorbents prepared from M. oleifera. The results indicate that the adsorption kinetic data were best described by pseudo-second-order model. In summary, Moringa seed husk can be considered as potential and promising biosorbent for heavy metals removal from water or wastewater systems. es_ES
dc.description.sponsorship The authors wish to thank CCD-UPV for the financial support given to this research, through ADSIDEO 2012 call and to Support Programme for Research and Development (PAID-06-12) from Universitat Politeécnica de València. We also would like to gratefully acknowledge Angel Maquieira from Chemical Department for his support in the heavy metal analysis and Hermenegildo Garcia and Rosa Torrero from the CSIC-I.T.Q research center from the Universitat Politecnica de Valencia for the support given in the FTIR analysis es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Desalination and Water Treatment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cadmium es_ES
dc.subject Copper es_ES
dc.subject Adsorption es_ES
dc.subject Moringa oleifera husk es_ES
dc.subject Heavy metals removal es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Valorization of Moringa oleifera seed husk as biosorbent: isotherm and kinetics studies to remove cadmium and copper from aqueous solutions es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1080/19443994.2016.1180473 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-12/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation García-Fayos, B.; Arnal, JM.; Piris, J.; Sancho, M. (2016). Valorization of Moringa oleifera seed husk as biosorbent: isotherm and kinetics studies to remove cadmium and copper from aqueous solutions. Desalination and Water Treatment. 57(48):23382-23396. https://doi.org/10.1080/19443994.2016.1180473 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename EuroMed 2015: Desalination For Clean Water & Energy es_ES
dc.relation.conferencedate Mayo 10-14,2015 es_ES
dc.relation.conferenceplace Palermo, Italy es_ES
dc.relation.publisherversion https://doi.org/10.1080/19443994.2016.1180473 es_ES
dc.description.upvformatpinicio 23382 es_ES
dc.description.upvformatpfin 23396 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 57 es_ES
dc.description.issue 48 es_ES
dc.relation.pasarela S\332466 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Jæger, I., Hop, H., & Gabrielsen, G. W. (2009). Biomagnification of mercury in selected species from an Arctic marine food web in Svalbard. Science of The Total Environment, 407(16), 4744-4751. doi:10.1016/j.scitotenv.2009.04.004 es_ES
dc.description.references Barceloux, D. G., & Barceloux, D. (1999). Copper. Journal of Toxicology: Clinical Toxicology, 37(2), 217-230. doi:10.1081/clt-100102421 es_ES
dc.description.references Noonan, C. W., Sarasua, S. M., Campagna, D., Kathman, S. J., Lybarger, J. A., & Mueller, P. W. (2002). Effects of exposure to low levels of environmental cadmium on renal biomarkers. Environmental Health Perspectives, 110(2), 151-155. doi:10.1289/ehp.02110151 es_ES
dc.description.references World Health Organization, Guidelines for Drinking-Water Quality, WHO Library Cataloguing in Publications Data, Geneva, 2008, pp. 317–337. es_ES
dc.description.references Meunier, N., Drogui, P., Montané, C., Hausler, R., Mercier, G., & Blais, J.-F. (2006). Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate. Journal of Hazardous Materials, 137(1), 581-590. doi:10.1016/j.jhazmat.2006.02.050 es_ES
dc.description.references Kurniawan, T. A., Chan, G. Y. S., Lo, W.-H., & Babel, S. (2006). Physico–chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118(1-2), 83-98. doi:10.1016/j.cej.2006.01.015 es_ES
dc.description.references Eccles, H. (1995). Removal of heavy metals from effluent streams — Why select a biological process? International Biodeterioration & Biodegradation, 35(1-3), 5-16. doi:10.1016/0964-8305(95)00044-6 es_ES
dc.description.references Volesky, B. (2001). Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy, 59(2-3), 203-216. doi:10.1016/s0304-386x(00)00160-2 es_ES
dc.description.references Senthilkumaar, S., Bharathi, S., Nithyanandhi, D., & Subburam, V. (2000). Biosorption of toxic heavy metals from aqueous solutions. Bioresource Technology, 75(2), 163-165. doi:10.1016/s0960-8524(00)00021-3 es_ES
dc.description.references Sharma, P., Kumari, P., Srivastava, M. M., & Srivastava, S. (2006). Removal of cadmium from aqueous system by shelled Moringa oleifera Lam. seed powder. Bioresource Technology, 97(2), 299-305. doi:10.1016/j.biortech.2005.02.034 es_ES
dc.description.references Sharma, P., Kumari, P., Srivastava, M. M., & Srivastava, S. (2007). Ternary biosorption studies of Cd(II), Cr(III) and Ni(II) on shelled Moringa oleifera seeds. Bioresource Technology, 98(2), 474-477. doi:10.1016/j.biortech.2005.12.016 es_ES
dc.description.references Helen Kalavathy, M., & Miranda, L. R. (2010). Moringa oleifera—A solid phase extractant for the removal of copper, nickel and zinc from aqueous solutions. Chemical Engineering Journal, 158(2), 188-199. doi:10.1016/j.cej.2009.12.039 es_ES
dc.description.references Reddy, D. H. K., Seshaiah, K., Reddy, A. V. R., & Lee, S. M. (2012). Optimization of Cd(II), Cu(II) and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder. Carbohydrate Polymers, 88(3), 1077-1086. doi:10.1016/j.carbpol.2012.01.073 es_ES
dc.description.references (2002). Coloration Technology, 118(5). doi:10.1111/cte.2002.118.issue-5 es_ES
dc.description.references Ferreira, P. M. P., Farias, D. F., Oliveira, J. T. de A., & Carvalho, A. de F. U. (2008). Moringa oleifera: bioactive compounds and nutritional potential. Revista de Nutrição, 21(4), 431-437. doi:10.1590/s1415-52732008000400007 es_ES
dc.description.references Kituyi, J. L., Foulkes, M., Worsfold, P., Ongulu, R. A., Kiplagat, A., & Gachanja, A. (2013). Efficiency of pre-treated Moringa oleifera for the removal of Cd2+ and Zn2+ ions from wastewaters. Ecohydrology & Hydrobiology, 13(4), 267-271. doi:10.1016/j.ecohyd.2013.10.009 es_ES
dc.description.references Kumari, P., Sharma, P., Srivastava, S., & Srivastava, M. M. (2006). Biosorption studies on shelled Moringa oleifera Lamarck seed powder: Removal and recovery of arsenic from aqueous system. International Journal of Mineral Processing, 78(3), 131-139. doi:10.1016/j.minpro.2005.10.001 es_ES
dc.description.references Nadeem, M., Mahmood, A., Shahid, S. A., Shah, S. S., Khalid, A. M., & McKay, G. (2006). Sorption of lead from aqueous solution by chemically modified carbon adsorbents. Journal of Hazardous Materials, 138(3), 604-613. doi:10.1016/j.jhazmat.2006.05.098 es_ES
dc.description.references Bhatti, H. N., Mumtaz, B., Hanif, M. A., & Nadeem, R. (2007). Removal of Zn(II) ions from aqueous solution using Moringa oleifera Lam. (horseradish tree) biomass. Process Biochemistry, 42(4), 547-553. doi:10.1016/j.procbio.2006.10.009 es_ES
dc.description.references Reddy, D. H. K., Seshaiah, K., Reddy, A. V. R., Rao, M. M., & Wang, M. C. (2010). Biosorption of Pb2+ from aqueous solutions by Moringa oleifera bark: Equilibrium and kinetic studies. Journal of Hazardous Materials, 174(1-3), 831-838. doi:10.1016/j.jhazmat.2009.09.128 es_ES
dc.description.references Reddy, D. H. K., Harinath, Y., Seshaiah, K., & Reddy, A. V. R. (2010). Biosorption of Pb(II) from aqueous solutions using chemically modified Moringa oleifera tree leaves. Chemical Engineering Journal, 162(2), 626-634. doi:10.1016/j.cej.2010.06.010 es_ES
dc.description.references Langmuir, I. (1918). THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. Journal of the American Chemical Society, 40(9), 1361-1403. doi:10.1021/ja02242a004 es_ES
dc.description.references (1998). The Canadian Journal of Chemical Engineering, 76(4). doi:10.1002/cjce.v76:4 es_ES
dc.description.references Munagapati, V. S., Yarramuthi, V., Nadavala, S. K., Alla, S. R., & Abburi, K. (2010). Biosorption of Cu(II), Cd(II) and Pb(II) by Acacia leucocephala bark powder: Kinetics, equilibrium and thermodynamics. Chemical Engineering Journal, 157(2-3), 357-365. doi:10.1016/j.cej.2009.11.015 es_ES
dc.description.references Garg, U., Kaur, M. P., Jawa, G. K., Sud, D., & Garg, V. K. (2008). Removal of cadmium (II) from aqueous solutions by adsorption on agricultural waste biomass. Journal of Hazardous Materials, 154(1-3), 1149-1157. doi:10.1016/j.jhazmat.2007.11.040 es_ES
dc.description.references Ho, Y. S., John Wase, D. A., & Forster, C. F. (1995). Batch nickel removal from aqueous solution by sphagnum moss peat. Water Research, 29(5), 1327-1332. doi:10.1016/0043-1354(94)00236-z es_ES
dc.description.references Mall, I. D., Srivastava, V. C., Agarwal, N. K., & Mishra, I. M. (2005). Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: Kinetic study and equilibrium isotherm analyses. Chemosphere, 61(4), 492-501. doi:10.1016/j.chemosphere.2005.03.065 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem