Mostrar el registro sencillo del ítem
dc.contributor.author | García-Fayos, Beatriz | es_ES |
dc.contributor.author | Arnal, José Miguel | es_ES |
dc.contributor.author | Piris, J. | es_ES |
dc.contributor.author | Sancho, M. | es_ES |
dc.date.accessioned | 2020-04-06T08:56:15Z | |
dc.date.available | 2020-04-06T08:56:15Z | |
dc.date.issued | 2016 | es_ES |
dc.identifier.issn | 1944-3994 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140205 | |
dc.description.abstract | [EN] Moringa oleifera is a plant with multiple uses. Among them, the best-known use of seeds is as natural coagulant for the clarification of turbid water. The process of preparation of the natural coagulant generates different wastes including Moringa seed husk. This work studies the use of this waste as biosorbent for cadmium and copper removal. Adsorption studies were performed using batch test and the effects of contact time, temperature, pH, concentration of metal, and concentration of adsorbent were also analyzed. We have also studied the biosorbent structure through SEM and EDX. Experimental results were analyzed using Langmuir and Freundlich isotherms and the adsorption kinetics by pseudo-first and pseudo-second-order equations. The experimental results showed that the maximum removal of Cu and Cd was observed at pH 6, 1h contact time, 1mg/L initial concentration of Cd and 2mg/L of Cu, and 1g of biosorbent added. The percentages of metal removal were around 90% for both metals studied. Results indicate that the data of Cu and Cd adsorption onto Moringa seed husk were best fit by the Langmuir model. The adsorption capacity (q(m)) calculated from the Langmuir isotherm was 13.1mgg(-1) for both metals, higher than observed for other biosorbents prepared from M. oleifera. The results indicate that the adsorption kinetic data were best described by pseudo-second-order model. In summary, Moringa seed husk can be considered as potential and promising biosorbent for heavy metals removal from water or wastewater systems. | es_ES |
dc.description.sponsorship | The authors wish to thank CCD-UPV for the financial support given to this research, through ADSIDEO 2012 call and to Support Programme for Research and Development (PAID-06-12) from Universitat Politeécnica de València. We also would like to gratefully acknowledge Angel Maquieira from Chemical Department for his support in the heavy metal analysis and Hermenegildo Garcia and Rosa Torrero from the CSIC-I.T.Q research center from the Universitat Politecnica de Valencia for the support given in the FTIR analysis | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Desalination and Water Treatment | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cadmium | es_ES |
dc.subject | Copper | es_ES |
dc.subject | Adsorption | es_ES |
dc.subject | Moringa oleifera husk | es_ES |
dc.subject | Heavy metals removal | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Valorization of Moringa oleifera seed husk as biosorbent: isotherm and kinetics studies to remove cadmium and copper from aqueous solutions | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1080/19443994.2016.1180473 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-12/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | García-Fayos, B.; Arnal, JM.; Piris, J.; Sancho, M. (2016). Valorization of Moringa oleifera seed husk as biosorbent: isotherm and kinetics studies to remove cadmium and copper from aqueous solutions. Desalination and Water Treatment. 57(48):23382-23396. https://doi.org/10.1080/19443994.2016.1180473 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | EuroMed 2015: Desalination For Clean Water & Energy | es_ES |
dc.relation.conferencedate | Mayo 10-14,2015 | es_ES |
dc.relation.conferenceplace | Palermo, Italy | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/19443994.2016.1180473 | es_ES |
dc.description.upvformatpinicio | 23382 | es_ES |
dc.description.upvformatpfin | 23396 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 57 | es_ES |
dc.description.issue | 48 | es_ES |
dc.relation.pasarela | S\332466 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Jæger, I., Hop, H., & Gabrielsen, G. W. (2009). Biomagnification of mercury in selected species from an Arctic marine food web in Svalbard. Science of The Total Environment, 407(16), 4744-4751. doi:10.1016/j.scitotenv.2009.04.004 | es_ES |
dc.description.references | Barceloux, D. G., & Barceloux, D. (1999). Copper. Journal of Toxicology: Clinical Toxicology, 37(2), 217-230. doi:10.1081/clt-100102421 | es_ES |
dc.description.references | Noonan, C. W., Sarasua, S. M., Campagna, D., Kathman, S. J., Lybarger, J. A., & Mueller, P. W. (2002). Effects of exposure to low levels of environmental cadmium on renal biomarkers. Environmental Health Perspectives, 110(2), 151-155. doi:10.1289/ehp.02110151 | es_ES |
dc.description.references | World Health Organization, Guidelines for Drinking-Water Quality, WHO Library Cataloguing in Publications Data, Geneva, 2008, pp. 317–337. | es_ES |
dc.description.references | Meunier, N., Drogui, P., Montané, C., Hausler, R., Mercier, G., & Blais, J.-F. (2006). Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate. Journal of Hazardous Materials, 137(1), 581-590. doi:10.1016/j.jhazmat.2006.02.050 | es_ES |
dc.description.references | Kurniawan, T. A., Chan, G. Y. S., Lo, W.-H., & Babel, S. (2006). Physico–chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118(1-2), 83-98. doi:10.1016/j.cej.2006.01.015 | es_ES |
dc.description.references | Eccles, H. (1995). Removal of heavy metals from effluent streams — Why select a biological process? International Biodeterioration & Biodegradation, 35(1-3), 5-16. doi:10.1016/0964-8305(95)00044-6 | es_ES |
dc.description.references | Volesky, B. (2001). Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy, 59(2-3), 203-216. doi:10.1016/s0304-386x(00)00160-2 | es_ES |
dc.description.references | Senthilkumaar, S., Bharathi, S., Nithyanandhi, D., & Subburam, V. (2000). Biosorption of toxic heavy metals from aqueous solutions. Bioresource Technology, 75(2), 163-165. doi:10.1016/s0960-8524(00)00021-3 | es_ES |
dc.description.references | Sharma, P., Kumari, P., Srivastava, M. M., & Srivastava, S. (2006). Removal of cadmium from aqueous system by shelled Moringa oleifera Lam. seed powder. Bioresource Technology, 97(2), 299-305. doi:10.1016/j.biortech.2005.02.034 | es_ES |
dc.description.references | Sharma, P., Kumari, P., Srivastava, M. M., & Srivastava, S. (2007). Ternary biosorption studies of Cd(II), Cr(III) and Ni(II) on shelled Moringa oleifera seeds. Bioresource Technology, 98(2), 474-477. doi:10.1016/j.biortech.2005.12.016 | es_ES |
dc.description.references | Helen Kalavathy, M., & Miranda, L. R. (2010). Moringa oleifera—A solid phase extractant for the removal of copper, nickel and zinc from aqueous solutions. Chemical Engineering Journal, 158(2), 188-199. doi:10.1016/j.cej.2009.12.039 | es_ES |
dc.description.references | Reddy, D. H. K., Seshaiah, K., Reddy, A. V. R., & Lee, S. M. (2012). Optimization of Cd(II), Cu(II) and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder. Carbohydrate Polymers, 88(3), 1077-1086. doi:10.1016/j.carbpol.2012.01.073 | es_ES |
dc.description.references | (2002). Coloration Technology, 118(5). doi:10.1111/cte.2002.118.issue-5 | es_ES |
dc.description.references | Ferreira, P. M. P., Farias, D. F., Oliveira, J. T. de A., & Carvalho, A. de F. U. (2008). Moringa oleifera: bioactive compounds and nutritional potential. Revista de Nutrição, 21(4), 431-437. doi:10.1590/s1415-52732008000400007 | es_ES |
dc.description.references | Kituyi, J. L., Foulkes, M., Worsfold, P., Ongulu, R. A., Kiplagat, A., & Gachanja, A. (2013). Efficiency of pre-treated Moringa oleifera for the removal of Cd2+ and Zn2+ ions from wastewaters. Ecohydrology & Hydrobiology, 13(4), 267-271. doi:10.1016/j.ecohyd.2013.10.009 | es_ES |
dc.description.references | Kumari, P., Sharma, P., Srivastava, S., & Srivastava, M. M. (2006). Biosorption studies on shelled Moringa oleifera Lamarck seed powder: Removal and recovery of arsenic from aqueous system. International Journal of Mineral Processing, 78(3), 131-139. doi:10.1016/j.minpro.2005.10.001 | es_ES |
dc.description.references | Nadeem, M., Mahmood, A., Shahid, S. A., Shah, S. S., Khalid, A. M., & McKay, G. (2006). Sorption of lead from aqueous solution by chemically modified carbon adsorbents. Journal of Hazardous Materials, 138(3), 604-613. doi:10.1016/j.jhazmat.2006.05.098 | es_ES |
dc.description.references | Bhatti, H. N., Mumtaz, B., Hanif, M. A., & Nadeem, R. (2007). Removal of Zn(II) ions from aqueous solution using Moringa oleifera Lam. (horseradish tree) biomass. Process Biochemistry, 42(4), 547-553. doi:10.1016/j.procbio.2006.10.009 | es_ES |
dc.description.references | Reddy, D. H. K., Seshaiah, K., Reddy, A. V. R., Rao, M. M., & Wang, M. C. (2010). Biosorption of Pb2+ from aqueous solutions by Moringa oleifera bark: Equilibrium and kinetic studies. Journal of Hazardous Materials, 174(1-3), 831-838. doi:10.1016/j.jhazmat.2009.09.128 | es_ES |
dc.description.references | Reddy, D. H. K., Harinath, Y., Seshaiah, K., & Reddy, A. V. R. (2010). Biosorption of Pb(II) from aqueous solutions using chemically modified Moringa oleifera tree leaves. Chemical Engineering Journal, 162(2), 626-634. doi:10.1016/j.cej.2010.06.010 | es_ES |
dc.description.references | Langmuir, I. (1918). THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. Journal of the American Chemical Society, 40(9), 1361-1403. doi:10.1021/ja02242a004 | es_ES |
dc.description.references | (1998). The Canadian Journal of Chemical Engineering, 76(4). doi:10.1002/cjce.v76:4 | es_ES |
dc.description.references | Munagapati, V. S., Yarramuthi, V., Nadavala, S. K., Alla, S. R., & Abburi, K. (2010). Biosorption of Cu(II), Cd(II) and Pb(II) by Acacia leucocephala bark powder: Kinetics, equilibrium and thermodynamics. Chemical Engineering Journal, 157(2-3), 357-365. doi:10.1016/j.cej.2009.11.015 | es_ES |
dc.description.references | Garg, U., Kaur, M. P., Jawa, G. K., Sud, D., & Garg, V. K. (2008). Removal of cadmium (II) from aqueous solutions by adsorption on agricultural waste biomass. Journal of Hazardous Materials, 154(1-3), 1149-1157. doi:10.1016/j.jhazmat.2007.11.040 | es_ES |
dc.description.references | Ho, Y. S., John Wase, D. A., & Forster, C. F. (1995). Batch nickel removal from aqueous solution by sphagnum moss peat. Water Research, 29(5), 1327-1332. doi:10.1016/0043-1354(94)00236-z | es_ES |
dc.description.references | Mall, I. D., Srivastava, V. C., Agarwal, N. K., & Mishra, I. M. (2005). Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: Kinetic study and equilibrium isotherm analyses. Chemosphere, 61(4), 492-501. doi:10.1016/j.chemosphere.2005.03.065 | es_ES |