- -

A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology

Mostrar el registro completo del ítem

Pretel-Jolis, R.; Robles Martínez, Á.; Ruano García, MV.; Seco, A.; Ferrer, J. (2016). A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology. Environmental Technology. 37(18):2298-2315. https://doi.org/10.1080/09593330.2016.1148903

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140208

Ficheros en el ítem

Metadatos del ítem

Título: A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology
Autor: Pretel-Jolis, Ruth Robles Martínez, Ángel Ruano García, María Victoria Seco, A. Ferrer, J.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] The aim of this study is to propose a detailed and comprehensive plant-wide model for assessing the energy demand of different wastewater treatment systems (beyond the traditional activated sludge) in both steady- and ...[+]
Palabras clave: Anaerobic MBR , BNRM2 , DESASS , Plant-wide energy model , Wastewater treatment
Derechos de uso: Reserva de todos los derechos
Fuente:
Environmental Technology. (issn: 0959-3330 )
DOI: 10.1080/09593330.2016.1148903
Editorial:
Taylor & Francis
Versión del editor: https://doi.org/10.1080/09593330.2016.1148903
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CTM2011-28595-C02-01/ES/MODELACION Y CONTROL DE LA RECUPERACION COMO BIOGAS DE LA ENERGIA DE LA MATERIA ORGANICA Y NUTRIENTES DEL AGUA RESIDUAL, ACOPLANDO UN ANBRM Y UN CULTIVO DE MICROALGAS/
Agradecimientos:
This research work has been supported by the Spanish Ministry of Science and Innovation [MICINN, Project CTM2011-28595-C02-01/02] jointly with the European Regional Development Fund (ERDF).
Tipo: Artículo

References

Olsson, G., Carlsson, B., Comas, J., Copp, J., Gernaey, K. V., Ingildsen, P., … Åmand, L. (2014). Instrumentation, control and automation in wastewater – from London 1973 to Narbonne 2013. Water Science and Technology, 69(7), 1373-1385. doi:10.2166/wst.2014.057

Nicolae, B., & George-Vlad, B. (2015). Life cycle analysis in refurbishment of the buildings as intervention practices in energy saving. Energy and Buildings, 86, 74-85. doi:10.1016/j.enbuild.2014.10.021

Corominas, L., Foley, J., Guest, J. S., Hospido, A., Larsen, H. F., Morera, S., & Shaw, A. (2013). Life cycle assessment applied to wastewater treatment: State of the art. Water Research, 47(15), 5480-5492. doi:10.1016/j.watres.2013.06.049 [+]
Olsson, G., Carlsson, B., Comas, J., Copp, J., Gernaey, K. V., Ingildsen, P., … Åmand, L. (2014). Instrumentation, control and automation in wastewater – from London 1973 to Narbonne 2013. Water Science and Technology, 69(7), 1373-1385. doi:10.2166/wst.2014.057

Nicolae, B., & George-Vlad, B. (2015). Life cycle analysis in refurbishment of the buildings as intervention practices in energy saving. Energy and Buildings, 86, 74-85. doi:10.1016/j.enbuild.2014.10.021

Corominas, L., Foley, J., Guest, J. S., Hospido, A., Larsen, H. F., Morera, S., & Shaw, A. (2013). Life cycle assessment applied to wastewater treatment: State of the art. Water Research, 47(15), 5480-5492. doi:10.1016/j.watres.2013.06.049

Bauer, A., Bösch, P., Friedl, A., & Amon, T. (2009). Analysis of methane potentials of steam-exploded wheat straw and estimation of energy yields of combined ethanol and methane production. Journal of Biotechnology, 142(1), 50-55. doi:10.1016/j.jbiotec.2009.01.017

Venkatesh, G., & Elmi, R. A. (2013). Economic–environmental analysis of handling biogas from sewage sludge digesters in WWTPs (wastewater treatment plants) for energy recovery: Case study of Bekkelaget WWTP in Oslo (Norway). Energy, 58, 220-235. doi:10.1016/j.energy.2013.05.025

EPA (Environmental Protection Agency). Combined Heat and Power Partnership. Agency of the United States federal government; 2015.

Descoins, N., Deleris, S., Lestienne, R., Trouvé, E., & Maréchal, F. (2012). Energy efficiency in waste water treatments plants: Optimization of activated sludge process coupled with anaerobic digestion. Energy, 41(1), 153-164. doi:10.1016/j.energy.2011.03.078

Gernaey, K. V., van Loosdrecht, M. C. ., Henze, M., Lind, M., & Jørgensen, S. B. (2004). Activated sludge wastewater treatment plant modelling and simulation: state of the art. Environmental Modelling & Software, 19(9), 763-783. doi:10.1016/j.envsoft.2003.03.005

Ferrer, J., Seco, A., Serralta, J., Ribes, J., Manga, J., Asensi, E., … Llavador, F. (2008). DESASS: A software tool for designing, simulating and optimising WWTPs. Environmental Modelling & Software, 23(1), 19-26. doi:10.1016/j.envsoft.2007.04.005

Bozkurt, H., Quaglia, A., Gernaey, K. V., & Sin, G. (2015). A mathematical programming framework for early stage design of wastewater treatment plants. Environmental Modelling & Software, 64, 164-176. doi:10.1016/j.envsoft.2014.11.023

Jeppsson, U., Rosen, C., Alex, J., Copp, J., Gernaey, K. V., Pons, M.-N., & Vanrolleghem, P. A. (2006). Towards a benchmark simulation model for plant-wide control strategy performance evaluation of WWTPs. Water Science and Technology, 53(1), 287-295. doi:10.2166/wst.2006.031

Gomez, J., de Gracia, M., Ayesa, E., & Garcia-Heras, J. L. (2007). Mathematical modelling of autothermal thermophilic aerobic digesters. Water Research, 41(5), 959-968. doi:10.1016/j.watres.2006.11.042

Righi, S., Oliviero, L., Pedrini, M., Buscaroli, A., & Della Casa, C. (2013). Life Cycle Assessment of management systems for sewage sludge and food waste: centralized and decentralized approaches. Journal of Cleaner Production, 44, 8-17. doi:10.1016/j.jclepro.2012.12.004

Lemos, D., Dias, A. C., Gabarrell, X., & Arroja, L. (2013). Environmental assessment of an urban water system. Journal of Cleaner Production, 54, 157-165. doi:10.1016/j.jclepro.2013.04.029

Nowak, O., Enderle, P., & Varbanov, P. (2015). Ways to optimize the energy balance of municipal wastewater systems: lessons learned from Austrian applications. Journal of Cleaner Production, 88, 125-131. doi:10.1016/j.jclepro.2014.08.068

Tous M, Ladislav B, Houdková L, Pavlas M, Stehlík P. Waste-to energy (W2E) software – a support tool for decision making process. Brno University of Technology, Institute of Process and Environmental Engineering, Chemical Engineering Transactions, Volume 18; 2009.

Pijáková, I. (2015). Application of Dynamic Simulations for Assessment of Urban Wastewater Systems Operation. Chemical and Biochemical Engineering Quarterly Journal, 29(1), 55-62. doi:10.15255/cabeq.2014.2127

McCarty, P. L., Bae, J., & Kim, J. (2011). Domestic Wastewater Treatment as a Net Energy Producer–Can This be Achieved? Environmental Science & Technology, 45(17), 7100-7106. doi:10.1021/es2014264

Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014

Smith, A. L., Stadler, L. B., Cao, L., Love, N. G., Raskin, L., & Skerlos, S. J. (2014). Navigating Wastewater Energy Recovery Strategies: A Life Cycle Comparison of Anaerobic Membrane Bioreactor and Conventional Treatment Systems with Anaerobic Digestion. Environmental Science & Technology, 48(10), 5972-5981. doi:10.1021/es5006169

Barat, R., Serralta, J., Ruano, M. V., Jiménez, E., Ribes, J., Seco, A., & Ferrer, J. (2013). Biological Nutrient Removal Model No. 2 (BNRM2): a general model for wastewater treatment plants. Water Science and Technology, 67(7), 1481-1489. doi:10.2166/wst.2013.004

Durán F. Mathematical modelling of the anaerobic urban wastewater treatment including sulphate-reducing bacteria. Application to an anaerobic membrane bioreactor (Modelación matemática del tratamiento anaerobio de aguas residuales urbanas incluyendo las bacterias sulfatorreductoras, Aplicación a un biorreactor anaerobio de membranas), Ph.D. thesis, Dept. of Hydraulic Engineering and Environment, Universitat Politècnica de València, Spain; 2013.

Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2013). Environmental impact of submerged anaerobic MBR (SAnMBR) technology used to treat urban wastewater at different temperatures. Bioresource Technology, 149, 532-540. doi:10.1016/j.biortech.2013.09.060

Gillot, S., & Vanrolleghem, P. A. (2003). Equilibrium temperature in aerated basins—comparison of two prediction models. Water Research, 37(15), 3742-3748. doi:10.1016/s0043-1354(03)00263-x

EPA. Catalog of Biomass Combined Heat and Power Catalog of Technologies; 2007 [cited 2015 May 5] Available from: http://www.epa.gov/chp/documents/biomass_chp_catalog.pdf.

PSE Probiogas. Development of sustainable systems of biogas production and use in Spain. Funded by the Ministry of science and innovation. Spanish government, Madrid; 2010 [cited 2012 May 5] http://213.229.136.11/bases/ainia_probiogas.nsf/0/F9F832A77BF0CA25C125753F0058C4B2/$FILE/Cap2.pdf.

Serralta, J., Ferrer, J., Borrás, L., & Seco, A. (2004). An extension of ASM2d including pH calculation. Water Research, 38(19), 4029-4038. doi:10.1016/j.watres.2004.07.009

Chanona, J., Ribes, J., Seco, A., & Ferrer, J. (2006). Optimum design and operation of primary sludge fermentation schemes for volatile fatty acids production. Water Research, 40(1), 53-60. doi:10.1016/j.watres.2005.10.020

Gatti MN. Characterization of wastewaters and calibration of the mathematical model BNRM1 for simulation of the biological removal process of organic matter and nutrients (Caracterización de las aguas residuales y calibración del modelo matemático BNRM1 para la simulación de los procesos de eliminación biológica de materia orgánica y nutrientes). Ph.D. thesis, Dept. of Hydraulic Engineering and Environment, Universitat de València, Spain; 2009.

Ruano, M. V., Serralta, J., Ribes, J., Garcia-Usach, F., Bouzas, A., Barat, R., … Ferrer, J. (2012). Application of the general model ‘Biological Nutrient Removal Model No. 1’ to upgrade two full-scale WWTPs. Environmental Technology, 33(9), 1005-1012. doi:10.1080/09593330.2011.604877

Ferrer, J., Pretel, R., Durán, F., Giménez, J. B., Robles, A., Ruano, M. V., … Seco, A. (2015). Design methodology for submerged anaerobic membrane bioreactors (AnMBR): A case study. Separation and Purification Technology, 141, 378-386. doi:10.1016/j.seppur.2014.12.018

AEMET. State Meteorological Agency (Agencia Estatal de Meteorología). Register of hourly and daily average ambient temperature from 2010 to 2014 located in Valencia; 2015.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem