Mostrar el registro sencillo del ítem
dc.contributor.author | Naranjo, Diana M. | es_ES |
dc.contributor.author | Prieto, José Ramón | es_ES |
dc.contributor.author | Moltó, Germán | es_ES |
dc.contributor.author | Calatrava Arroyo, Amanda | es_ES |
dc.date.accessioned | 2020-04-06T08:56:22Z | |
dc.date.available | 2020-04-06T08:56:22Z | |
dc.date.issued | 2019-07-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140209 | |
dc.description.abstract | [EN] Cloud providers such as Amazon Web Services (AWS) stand out as useful platforms to teach distributed computing concepts as well as the development of Cloud-native scalable application architectures on real-world infrastructures. Instructors can benefit from high-level tools to track the progress of students during their learning paths on the Cloud, and this information can be disclosed via educational dashboards for students to understand their progress through the practical activities. To this aim, this paper introduces CloudTrail-Tracker, an open-source platform to obtain enhanced usage analytics from a shared AWS account. The tool provides the instructor with a visual dashboard that depicts the aggregated usage of resources by all the students during a certain time frame and the specific use of AWS for a specific student. To facilitate self-regulation of students, the dashboard also depicts the percentage of progress for each lab session and the pending actions by the student. The dashboard has been integrated in four Cloud subjects that use different learning methodologies (from face-to-face to online learning) and the students positively highlight the usefulness of the tool for Cloud instruction in AWS. This automated procurement of evidences of student activity on the Cloud results in close to real-time learning analytics useful both for semi-automated assessment and student self-awareness of their own training progress. | es_ES |
dc.description.sponsorship | This research was funded by the Spanish Ministerio de Economia, Industria y Competitividad, grant number TIN2016-79951-R (BigCLOE) and by the Vicerrectorado de Estudios, Calidad y Acreditacion of the Universitat Politecnica de Valencia (UPV) to develop the PIME B29. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Cloud computing | es_ES |
dc.subject | Learning analytics | es_ES |
dc.subject | Learning dashboards | es_ES |
dc.subject | Visual learning analytics | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | A Visual Dashboard to Track Learning Analytics for Educational Cloud Computing | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s19132952 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2016-79951-R/ES/COMPUTACION BIG DATA Y DE ALTAS PRESTACIONES SOBRE MULTI-CLOUDS ELASTICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PIME B29 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.description.bibliographicCitation | Naranjo, DM.; Prieto, JR.; Moltó, G.; Calatrava Arroyo, A. (2019). A Visual Dashboard to Track Learning Analytics for Educational Cloud Computing. Sensors. 19(13):1-15. https://doi.org/10.3390/s19132952 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s19132952 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 13 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.relation.pasarela | S\390913 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Porter, W. W., Graham, C. R., Spring, K. A., & Welch, K. R. (2014). Blended learning in higher education: Institutional adoption and implementation. Computers & Education, 75, 185-195. doi:10.1016/j.compedu.2014.02.011 | es_ES |
dc.description.references | Thai, N. T. T., De Wever, B., & Valcke, M. (2017). The impact of a flipped classroom design on learning performance in higher education: Looking for the best «blend» of lectures and guiding questions with feedback. Computers & Education, 107, 113-126. doi:10.1016/j.compedu.2017.01.003 | es_ES |
dc.description.references | Chen, Y., Wang, Y., Kinshuk, & Chen, N.-S. (2014). Is FLIP enough? Or should we use the FLIPPED model instead? Computers & Education, 79, 16-27. doi:10.1016/j.compedu.2014.07.004 | es_ES |
dc.description.references | Baepler, P., Walker, J. D., & Driessen, M. (2014). It’s not about seat time: Blending, flipping, and efficiency in active learning classrooms. Computers & Education, 78, 227-236. doi:10.1016/j.compedu.2014.06.006 | es_ES |
dc.description.references | Molto, G., & Caballer, M. (2014). On using the cloud to support online courses. 2014 IEEE Frontiers in Education Conference (FIE) Proceedings. doi:10.1109/fie.2014.7044041 | es_ES |
dc.description.references | González-Martínez, J. A., Bote-Lorenzo, M. L., Gómez-Sánchez, E., & Cano-Parra, R. (2015). Cloud computing and education: A state-of-the-art survey. Computers & Education, 80, 132-151. doi:10.1016/j.compedu.2014.08.017 | es_ES |
dc.description.references | AWS Cloudtrailhttps://aws.amazon.com/cloudtrail/?nc1=h_ls | es_ES |
dc.description.references | Ferguson, R. (2012). Learning analytics: drivers, developments and challenges. International Journal of Technology Enhanced Learning, 4(5/6), 304. doi:10.1504/ijtel.2012.051816 | es_ES |
dc.description.references | Schwendimann, B. A., Rodriguez-Triana, M. J., Vozniuk, A., Prieto, L. P., Boroujeni, M. S., Holzer, A., … Dillenbourg, P. (2017). Perceiving Learning at a Glance: A Systematic Literature Review of Learning Dashboard Research. IEEE Transactions on Learning Technologies, 10(1), 30-41. doi:10.1109/tlt.2016.2599522 | es_ES |
dc.description.references | Sedrakyan, G., Malmberg, J., Verbert, K., Järvelä, S., & Kirschner, P. A. (2020). Linking learning behavior analytics and learning science concepts: Designing a learning analytics dashboard for feedback to support learning regulation. Computers in Human Behavior, 107, 105512. doi:10.1016/j.chb.2018.05.004 | es_ES |
dc.description.references | Tabaa, Y., & Medouri, A. (2013). LASyM: A Learning Analytics System for MOOCs. International Journal of Advanced Computer Science and Applications, 4(5). doi:10.14569/ijacsa.2013.040516 | es_ES |
dc.description.references | Verbert, K., Govaerts, S., Duval, E., Santos, J. L., Van Assche, F., Parra, G., & Klerkx, J. (2013). Learning dashboards: an overview and future research opportunities. Personal and Ubiquitous Computing. doi:10.1007/s00779-013-0751-2 | es_ES |
dc.description.references | Arnold, K. E., & Pistilli, M. D. (2012). Course signals at Purdue. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge - LAK ’12. doi:10.1145/2330601.2330666 | es_ES |
dc.description.references | Ali, L., Hatala, M., Gašević, D., & Jovanović, J. (2012). A qualitative evaluation of evolution of a learning analytics tool. Computers & Education, 58(1), 470-489. doi:10.1016/j.compedu.2011.08.030 | es_ES |
dc.description.references | Leony, D., Pardo, A., de la Fuente Valentín, L., de Castro, D. S., & Kloos, C. D. (2012). GLASS. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge - LAK ’12. doi:10.1145/2330601.2330642 | es_ES |
dc.description.references | Vieira, C., Parsons, P., & Byrd, V. (2018). Visual learning analytics of educational data: A systematic literature review and research agenda. Computers & Education, 122, 119-135. doi:10.1016/j.compedu.2018.03.018 | es_ES |
dc.description.references | Jivet, I., Scheffel, M., Specht, M., & Drachsler, H. (2018). License to evaluate. Proceedings of the 8th International Conference on Learning Analytics and Knowledge. doi:10.1145/3170358.3170421 | es_ES |
dc.description.references | Amazon CloudWatchhttps://aws.amazon.com/cloudwatch/?nc1=h_ls | es_ES |
dc.description.references | Spectrumhttps://spectrumapp.io/ | es_ES |
dc.description.references | Opsview Monitorhttps://www.opsview.com/ | es_ES |
dc.description.references | SignalFxhttps://signalfx.com/ | es_ES |
dc.description.references | AWS Cloud Monitoringhttps://www.solarwinds.com/topics/aws-monitoring | es_ES |
dc.description.references | Lonn, S., Aguilar, S. J., & Teasley, S. D. (2015). Investigating student motivation in the context of a learning analytics intervention during a summer bridge program. Computers in Human Behavior, 47, 90-97. doi:10.1016/j.chb.2014.07.013 | es_ES |
dc.description.references | Pintrich, P. R. (2004). A Conceptual Framework for Assessing Motivation and Self-Regulated Learning in College Students. Educational Psychology Review, 16(4), 385-407. doi:10.1007/s10648-004-0006-x | es_ES |
dc.description.references | Butler, D. L., & Winne, P. H. (1995). Feedback and Self-Regulated Learning: A Theoretical Synthesis. Review of Educational Research, 65(3), 245-281. doi:10.3102/00346543065003245 | es_ES |
dc.description.references | Knight, S., Buckingham Shum, S., & Littleton, K. (2014). Epistemology, Assessment, Pedagogy: Where Learning Meets Analytics in the Middle Space. Journal of Learning Analytics, 1(2). doi:10.18608/jla.2014.12.3 | es_ES |
dc.description.references | Jivet, I., Scheffel, M., Drachsler, H., & Specht, M. (2017). Awareness Is Not Enough: Pitfalls of Learning Analytics Dashboards in the Educational Practice. Lecture Notes in Computer Science, 82-96. doi:10.1007/978-3-319-66610-5_7 | es_ES |