- -

A Visual Dashboard to Track Learning Analytics for Educational Cloud Computing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Visual Dashboard to Track Learning Analytics for Educational Cloud Computing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Naranjo, Diana M. es_ES
dc.contributor.author Prieto, José Ramón es_ES
dc.contributor.author Moltó, Germán es_ES
dc.contributor.author Calatrava Arroyo, Amanda es_ES
dc.date.accessioned 2020-04-06T08:56:22Z
dc.date.available 2020-04-06T08:56:22Z
dc.date.issued 2019-07-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140209
dc.description.abstract [EN] Cloud providers such as Amazon Web Services (AWS) stand out as useful platforms to teach distributed computing concepts as well as the development of Cloud-native scalable application architectures on real-world infrastructures. Instructors can benefit from high-level tools to track the progress of students during their learning paths on the Cloud, and this information can be disclosed via educational dashboards for students to understand their progress through the practical activities. To this aim, this paper introduces CloudTrail-Tracker, an open-source platform to obtain enhanced usage analytics from a shared AWS account. The tool provides the instructor with a visual dashboard that depicts the aggregated usage of resources by all the students during a certain time frame and the specific use of AWS for a specific student. To facilitate self-regulation of students, the dashboard also depicts the percentage of progress for each lab session and the pending actions by the student. The dashboard has been integrated in four Cloud subjects that use different learning methodologies (from face-to-face to online learning) and the students positively highlight the usefulness of the tool for Cloud instruction in AWS. This automated procurement of evidences of student activity on the Cloud results in close to real-time learning analytics useful both for semi-automated assessment and student self-awareness of their own training progress. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministerio de Economia, Industria y Competitividad, grant number TIN2016-79951-R (BigCLOE) and by the Vicerrectorado de Estudios, Calidad y Acreditacion of the Universitat Politecnica de Valencia (UPV) to develop the PIME B29. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cloud computing es_ES
dc.subject Learning analytics es_ES
dc.subject Learning dashboards es_ES
dc.subject Visual learning analytics es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A Visual Dashboard to Track Learning Analytics for Educational Cloud Computing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s19132952 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-79951-R/ES/COMPUTACION BIG DATA Y DE ALTAS PRESTACIONES SOBRE MULTI-CLOUDS ELASTICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PIME B29 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Naranjo, DM.; Prieto, JR.; Moltó, G.; Calatrava Arroyo, A. (2019). A Visual Dashboard to Track Learning Analytics for Educational Cloud Computing. Sensors. 19(13):1-15. https://doi.org/10.3390/s19132952 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s19132952 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 13 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.relation.pasarela S\390913 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Porter, W. W., Graham, C. R., Spring, K. A., & Welch, K. R. (2014). Blended learning in higher education: Institutional adoption and implementation. Computers & Education, 75, 185-195. doi:10.1016/j.compedu.2014.02.011 es_ES
dc.description.references Thai, N. T. T., De Wever, B., & Valcke, M. (2017). The impact of a flipped classroom design on learning performance in higher education: Looking for the best «blend» of lectures and guiding questions with feedback. Computers & Education, 107, 113-126. doi:10.1016/j.compedu.2017.01.003 es_ES
dc.description.references Chen, Y., Wang, Y., Kinshuk, & Chen, N.-S. (2014). Is FLIP enough? Or should we use the FLIPPED model instead? Computers & Education, 79, 16-27. doi:10.1016/j.compedu.2014.07.004 es_ES
dc.description.references Baepler, P., Walker, J. D., & Driessen, M. (2014). It’s not about seat time: Blending, flipping, and efficiency in active learning classrooms. Computers & Education, 78, 227-236. doi:10.1016/j.compedu.2014.06.006 es_ES
dc.description.references Molto, G., & Caballer, M. (2014). On using the cloud to support online courses. 2014 IEEE Frontiers in Education Conference (FIE) Proceedings. doi:10.1109/fie.2014.7044041 es_ES
dc.description.references González-Martínez, J. A., Bote-Lorenzo, M. L., Gómez-Sánchez, E., & Cano-Parra, R. (2015). Cloud computing and education: A state-of-the-art survey. Computers & Education, 80, 132-151. doi:10.1016/j.compedu.2014.08.017 es_ES
dc.description.references AWS Cloudtrailhttps://aws.amazon.com/cloudtrail/?nc1=h_ls es_ES
dc.description.references Ferguson, R. (2012). Learning analytics: drivers, developments and challenges. International Journal of Technology Enhanced Learning, 4(5/6), 304. doi:10.1504/ijtel.2012.051816 es_ES
dc.description.references Schwendimann, B. A., Rodriguez-Triana, M. J., Vozniuk, A., Prieto, L. P., Boroujeni, M. S., Holzer, A., … Dillenbourg, P. (2017). Perceiving Learning at a Glance: A Systematic Literature Review of Learning Dashboard Research. IEEE Transactions on Learning Technologies, 10(1), 30-41. doi:10.1109/tlt.2016.2599522 es_ES
dc.description.references Sedrakyan, G., Malmberg, J., Verbert, K., Järvelä, S., & Kirschner, P. A. (2020). Linking learning behavior analytics and learning science concepts: Designing a learning analytics dashboard for feedback to support learning regulation. Computers in Human Behavior, 107, 105512. doi:10.1016/j.chb.2018.05.004 es_ES
dc.description.references Tabaa, Y., & Medouri, A. (2013). LASyM: A Learning Analytics System for MOOCs. International Journal of Advanced Computer Science and Applications, 4(5). doi:10.14569/ijacsa.2013.040516 es_ES
dc.description.references Verbert, K., Govaerts, S., Duval, E., Santos, J. L., Van Assche, F., Parra, G., & Klerkx, J. (2013). Learning dashboards: an overview and future research opportunities. Personal and Ubiquitous Computing. doi:10.1007/s00779-013-0751-2 es_ES
dc.description.references Arnold, K. E., & Pistilli, M. D. (2012). Course signals at Purdue. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge - LAK ’12. doi:10.1145/2330601.2330666 es_ES
dc.description.references Ali, L., Hatala, M., Gašević, D., & Jovanović, J. (2012). A qualitative evaluation of evolution of a learning analytics tool. Computers & Education, 58(1), 470-489. doi:10.1016/j.compedu.2011.08.030 es_ES
dc.description.references Leony, D., Pardo, A., de la Fuente Valentín, L., de Castro, D. S., & Kloos, C. D. (2012). GLASS. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge - LAK ’12. doi:10.1145/2330601.2330642 es_ES
dc.description.references Vieira, C., Parsons, P., & Byrd, V. (2018). Visual learning analytics of educational data: A systematic literature review and research agenda. Computers & Education, 122, 119-135. doi:10.1016/j.compedu.2018.03.018 es_ES
dc.description.references Jivet, I., Scheffel, M., Specht, M., & Drachsler, H. (2018). License to evaluate. Proceedings of the 8th International Conference on Learning Analytics and Knowledge. doi:10.1145/3170358.3170421 es_ES
dc.description.references Amazon CloudWatchhttps://aws.amazon.com/cloudwatch/?nc1=h_ls es_ES
dc.description.references Spectrumhttps://spectrumapp.io/ es_ES
dc.description.references Opsview Monitorhttps://www.opsview.com/ es_ES
dc.description.references SignalFxhttps://signalfx.com/ es_ES
dc.description.references AWS Cloud Monitoringhttps://www.solarwinds.com/topics/aws-monitoring es_ES
dc.description.references Lonn, S., Aguilar, S. J., & Teasley, S. D. (2015). Investigating student motivation in the context of a learning analytics intervention during a summer bridge program. Computers in Human Behavior, 47, 90-97. doi:10.1016/j.chb.2014.07.013 es_ES
dc.description.references Pintrich, P. R. (2004). A Conceptual Framework for Assessing Motivation and Self-Regulated Learning in College Students. Educational Psychology Review, 16(4), 385-407. doi:10.1007/s10648-004-0006-x es_ES
dc.description.references Butler, D. L., & Winne, P. H. (1995). Feedback and Self-Regulated Learning: A Theoretical Synthesis. Review of Educational Research, 65(3), 245-281. doi:10.3102/00346543065003245 es_ES
dc.description.references Knight, S., Buckingham Shum, S., & Littleton, K. (2014). Epistemology, Assessment, Pedagogy: Where Learning Meets Analytics in the Middle Space. Journal of Learning Analytics, 1(2). doi:10.18608/jla.2014.12.3 es_ES
dc.description.references Jivet, I., Scheffel, M., Drachsler, H., & Specht, M. (2017). Awareness Is Not Enough: Pitfalls of Learning Analytics Dashboards in the Educational Practice. Lecture Notes in Computer Science, 82-96. doi:10.1007/978-3-319-66610-5_7 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem