- -

Majorana-like Zero Modes in Kekule Distorted Sonic Lattices

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Majorana-like Zero Modes in Kekule Distorted Sonic Lattices

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gao, Penglin es_ES
dc.contributor.author Torrent Martí, Daniel es_ES
dc.contributor.author Cervera Moreno, Francisco Salvador es_ES
dc.contributor.author San-Jose, Pablo es_ES
dc.contributor.author Sánchez-Dehesa Moreno-Cid, José es_ES
dc.contributor.author Christensen, Johan es_ES
dc.date.accessioned 2020-04-06T08:56:29Z
dc.date.available 2020-04-06T08:56:29Z
dc.date.issued 2019-11-06 es_ES
dc.identifier.issn 0031-9007 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140214
dc.description.abstract [EN] Topological phases have recently been realized in bosonic systems. The associated boundary modes between regions of distinct topology have been used to demonstrate robust waveguiding, protected from defects by the topology of the surrounding bulk. A related type of topologically protected state that is not propagating but is bound to a defect has not been demonstrated to date in a bosonic setting. Here we demonstrate numerically and experimentally that an acoustic mode can be topologically bound to a vortex fabricated in a two-dimensional, Kekul¿e-distorted triangular acoustic lattice. Such lattice realizes an acoustic analog of the Jackiw-Rossi mechanism that topologically binds a bound state in a p-wave superconductor vortex. The acoustic bound state is thus a bosonic analog of a Majorana bound state, where the two valleys replace particle and hole components. We numerically show that it is topologically protected against arbitrary symmetry-preserving local perturbations, and remains pinned to the Dirac frequency of the unperturbed lattice regardless of parameter variations. We demonstrate our prediction experimentally by 3D printing the vortex pattern in a plastic matrix and measuring the spectrum of the acoustic response of the device. Despite viscothermal losses, the measured topological resonance remains robust, with its frequency closely matching our simulations. es_ES
dc.description.sponsorship J. C. acknowledges support from the European Research Council (ERC) through the Starting Grant No. 714577 PHONOMETA and from the MINECO through a Ramon y Cajal grant (No. RYC-2015-17156). J. S.-D. acknowledges support from the Ministerio de Economia y Competitividad of the Spanish Government and the European Union "Fondo Europeo de Desarrollo Regional (FEDER)" through Project No. TEC2014-53088-C3-1-R. P. S.-J. acknowledges support from MINECO/FEDER under Grant No. FIS2015-65706-P. D. T. acknowledges financial support through the Ramon y Cajal fellowship under Grant No. RYC-2016-21188 and to the Ministry of Science, Innovation and Universities through Project No. RTI2018-093921-A-C42. es_ES
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Sonic lattices es_ES
dc.subject Topological phases es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Majorana-like Zero Modes in Kekule Distorted Sonic Lattices es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevLett.123.196601 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/714577/EU/Frontiers in Phononics: Parity-Time Symmetric Phononic Metamaterials/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2015-17156/ES/RYC-2015-17156/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2015-65706-P/ES/MODELADO NUMERICO DE NUEVAS NANOESTRUCTURAS HIBRIDAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2016-21188/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093921-A-C42/ES/UN METODO DE DISPERSION MULTIPLE INVERSA PARA OPTOMECANICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-53088-C3-1-R/ES/DISPOSITIVOS PASIVOS BASADOS EN MATERIALES FUNCIONALES AVANZADOS CON RESONADORES DE ALTAS PRESTACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Gao, P.; Torrent Martí, D.; Cervera Moreno, FS.; San-Jose, P.; Sánchez-Dehesa Moreno-Cid, J.; Christensen, J. (2019). Majorana-like Zero Modes in Kekule Distorted Sonic Lattices. Physical Review Letters. 123(19):196601-1-196601-4. https://doi.org/10.1103/PhysRevLett.123.196601 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1103/PhysRevLett.123.196601 es_ES
dc.description.upvformatpinicio 196601-1 es_ES
dc.description.upvformatpfin 196601-4 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 123 es_ES
dc.description.issue 19 es_ES
dc.relation.pasarela S\401324 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Hasan, M. Z., & Kane, C. L. (2010). Colloquium: Topological insulators. Reviews of Modern Physics, 82(4), 3045-3067. doi:10.1103/revmodphys.82.3045 es_ES
dc.description.references Elliott, S. R., & Franz, M. (2015). Colloquium: Majorana fermions in nuclear, particle, and solid-state physics. Reviews of Modern Physics, 87(1), 137-163. doi:10.1103/revmodphys.87.137 es_ES
dc.description.references Acín, A., Bloch, I., Buhrman, H., Calarco, T., Eichler, C., Eisert, J., … Wilhelm, F. K. (2018). The quantum technologies roadmap: a European community view. New Journal of Physics, 20(8), 080201. doi:10.1088/1367-2630/aad1ea es_ES
dc.description.references Alicea, J. (2012). New directions in the pursuit of Majorana fermions in solid state systems. Reports on Progress in Physics, 75(7), 076501. doi:10.1088/0034-4885/75/7/076501 es_ES
dc.description.references Nayak, C., Simon, S. H., Stern, A., Freedman, M., & Das Sarma, S. (2008). Non-Abelian anyons and topological quantum computation. Reviews of Modern Physics, 80(3), 1083-1159. doi:10.1103/revmodphys.80.1083 es_ES
dc.description.references Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022-2025. doi:10.1103/physrevlett.71.2022 es_ES
dc.description.references Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378(6554), 241-241. doi:10.1038/378241a0 es_ES
dc.description.references Yang, Z., Gao, F., Shi, X., Lin, X., Gao, Z., Chong, Y., & Zhang, B. (2015). Topological Acoustics. Physical Review Letters, 114(11). doi:10.1103/physrevlett.114.114301 es_ES
dc.description.references He, C., Ni, X., Ge, H., Sun, X.-C., Chen, Y.-B., Lu, M.-H., … Chen, Y.-F. (2016). Acoustic topological insulator and robust one-way sound transport. Nature Physics, 12(12), 1124-1129. doi:10.1038/nphys3867 es_ES
dc.description.references Lu, J., Qiu, C., Ye, L., Fan, X., Ke, M., Zhang, F., & Liu, Z. (2016). Observation of topological valley transport of sound in sonic crystals. Nature Physics, 13(4), 369-374. doi:10.1038/nphys3999 es_ES
dc.description.references Deng, Y., Ge, H., Tian, Y., Lu, M., & Jing, Y. (2017). Observation of zone folding induced acoustic topological insulators and the role of spin-mixing defects. Physical Review B, 96(18). doi:10.1103/physrevb.96.184305 es_ES
dc.description.references Wang, M., Ye, L., Christensen, J., & Liu, Z. (2018). Valley Physics in Non-Hermitian Artificial Acoustic Boron Nitride. Physical Review Letters, 120(24). doi:10.1103/physrevlett.120.246601 es_ES
dc.description.references Zhang, Z., Tian, Y., Cheng, Y., Wei, Q., Liu, X., & Christensen, J. (2018). Topological Acoustic Delay Line. Physical Review Applied, 9(3). doi:10.1103/physrevapplied.9.034032 es_ES
dc.description.references Zhang, X., Xiao, M., Cheng, Y., Lu, M.-H., & Christensen, J. (2018). Topological sound. Communications Physics, 1(1). doi:10.1038/s42005-018-0094-4 es_ES
dc.description.references Jackiw, R., & Rossi, P. (1981). Zero modes of the vortex-fermion system. Nuclear Physics B, 190(4), 681-691. doi:10.1016/0550-3213(81)90044-4 es_ES
dc.description.references Shore, J. D., Huang, M., Dorsey, A. T., & Sethna, J. P. (1989). Density of states in a vortex core and the zero-bias tunneling peak. Physical Review Letters, 62(26), 3089-3092. doi:10.1103/physrevlett.62.3089 es_ES
dc.description.references Gygi, F., & Schluter, M. (1990). Electronic tunneling into an isolated vortex in a clean type-II superconductor. Physical Review B, 41(1), 822-825. doi:10.1103/physrevb.41.822 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2012). Acoustic Analogue of Graphene: Observation of Dirac Cones in Acoustic Surface Waves. Physical Review Letters, 108(17). doi:10.1103/physrevlett.108.174301 es_ES
dc.description.references Kekuié, A. (1866). Untersuchungen über aromatische Verbindungen Ueber die Constitution der aromatischen Verbindungen. I. Ueber die Constitution der aromatischen Verbindungen. Annalen der Chemie und Pharmacie, 137(2), 129-196. doi:10.1002/jlac.18661370202 es_ES
dc.description.references Read, N., & Green, D. (2000). Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Physical Review B, 61(15), 10267-10297. doi:10.1103/physrevb.61.10267 es_ES
dc.description.references Fu, L., & Kane, C. L. (2008). Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator. Physical Review Letters, 100(9). doi:10.1103/physrevlett.100.096407 es_ES
dc.description.references Nishida, Y., Santos, L., & Chamon, C. (2010). Topological superconductors as nonrelativistic limits of Jackiw-Rossi and Jackiw-Rebbi models. Physical Review B, 82(14). doi:10.1103/physrevb.82.144513 es_ES
dc.description.references Hou, C.-Y., Chamon, C., & Mudry, C. (2007). Electron Fractionalization in Two-Dimensional Graphenelike Structures. Physical Review Letters, 98(18). doi:10.1103/physrevlett.98.186809 es_ES
dc.description.references Caroli, C., De Gennes, P. G., & Matricon, J. (1964). Bound Fermion states on a vortex line in a type II superconductor. Physics Letters, 9(4), 307-309. doi:10.1016/0031-9163(64)90375-0 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem