Mostrar el registro sencillo del ítem
dc.contributor.author | González-Barba, José Ángel | es_ES |
dc.contributor.author | Julien Delonca | es_ES |
dc.contributor.author | Sanchís Arnal, Emilio | es_ES |
dc.contributor.author | García-Granada, Fernando | es_ES |
dc.contributor.author | Segarra Soriano, Encarnación | es_ES |
dc.date.accessioned | 2020-04-06T08:56:36Z | |
dc.date.available | 2020-04-06T08:56:36Z | |
dc.date.issued | 2019-09 | es_ES |
dc.identifier.issn | 1135-5948 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140216 | |
dc.description.abstract | [EN] In this paper, we present an approach to multi-document summarization based on Siamese Hierarchical Attention Neural Networks. The attention mechanism of Hierarchical Attention Networks, provides a score to each sentence in function of its relevance in the classification process. For the summarization process, only the scores of sentences are used to rank them and select the most salient sentences. In this work we explore the adaptability of this model to the problem of multi-document summarization (typically very long documents where the straightforward application of neural networks tends to fail). The experiments were carried out using the CNN/DailyMail as training corpus, and the DUC-2007 as test corpus. Despite the difference between training set (CNN/DailyMail) and test set (DUC-2007) characteristics, the results show the adequacy of this approach to multi-document summarization. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Spanish MINECO and FEDER founds under project AMIC (TIN2017-85854-C4-2-R). Work of Jose-Angel Gonzalez is also financed by Universitat Politecnica de Valencia under grant PAID-01-17. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Sociedad Española para el Procesamiento del Lenguaje Natural | es_ES |
dc.relation.ispartof | PROCESAMIENTO DEL LENGUAJE NATURAL | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Siamese hierarchical attention networks | es_ES |
dc.subject | Multi-document summarization | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Applying Siamese Hierarchical Attention Neural Networks for multi-document summarization | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.26342/2019-63-12 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-01-17/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-85854-C4-2-R/ES/AMIC-UPV: ANALISIS AFECTIVO DE INFORMACION MULTIMEDIA CON COMUNICACION INCLUSIVA Y NATURAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | González-Barba, JÁ.; Julien Delonca; Sanchís Arnal, E.; García-Granada, F.; Segarra Soriano, E. (2019). Applying Siamese Hierarchical Attention Neural Networks for multi-document summarization. PROCESAMIENTO DEL LENGUAJE NATURAL. (63):111-118. https://doi.org/10.26342/2019-63-12 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.26342/2019-63-12 | es_ES |
dc.description.upvformatpinicio | 111 | es_ES |
dc.description.upvformatpfin | 118 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.issue | 63 | es_ES |
dc.relation.pasarela | S\396627 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |