- -

Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dhakshinamoorthy, Amarajothi es_ES
dc.contributor.author Asiri, Abdullah M. es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2020-04-06T08:56:37Z
dc.date.available 2020-04-06T08:56:37Z
dc.date.issued 2016 es_ES
dc.identifier.issn 2044-4753 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140217
dc.description.abstract [EN] Metal organic frameworks (MOFs) are among the most studied heterogeneous catalysts that have been applied to promote a wide range of reactions. Most of the initial studies on the catalytic activity of MOFs were based on the use of materials containing a single metal and a single linker. However, the most recent trend in the field is to exploit the synthetic flexibility offered by MOFs to obtain new MOFs possessing two different metals in their structure, or the same metal in different oxidation states (¿mixed metals¿) or different linkers (¿mixed linkers¿), resulting in materials with a superior catalytic activity over the corresponding single metal or single linker MOFs. This review is aimed to address the possible advantages of the use of mixed metal or mixed linker strategies to increase the activity of MOFs in some selected reactions. After some general sections introducing the structural features of MOFs, the nature of possible active sites, different ways to characterize mixed-metal or mixed-ligand MOFs and good practices, the main body of the review describes the current state of the art in the use of this type of MOF as heterogeneous catalysts, classified depending on the presence of more than one metal or more than one ligand. The final concluding remarks include some future targets in the area. es_ES
dc.description.sponsorship ADM thanks University Grants Commission (UGC), New Delhi for the award of Assistant Professorship under its Faculty Recharge Programme. ADM also thanks the Department of Science and Technology, India, for financial support through the Fast Track project (SB/FT/CS-166/2013) and the Generalidad Valenciana for financial aid supporting his stay at Valencia through the Prometeo programme. Financial support by the Spanish Ministry of Economy and Competitiveness (CTQ-2015-69153-C2-1-R and Severo Ochoa) and Generalidad Valenciana (Prometeo 2012-014) is gratefully acknowledged. The research leading to these results has received partial funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 228862. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Catalysis Science & Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c6cy00695g es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/228862/EU/MOFs as Catalysts and Adsorbents: Discovery and Engineering of Materials for Industrial Applications/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DST//SB%2FFT%2FCS-166%2F2013/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F014/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-69153-C2-1-R/ES/EXPLOTANDO EL USO DEL GRAFENO EN CATALISIS. USO DEL GRAFENO COMO CARBOCATALIZADOR O COMO SOPORTE/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Dhakshinamoorthy, A.; Asiri, AM.; García Gómez, H. (2016). Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts. Catalysis Science & Technology. 6(14):5238-5261. https://doi.org/10.1039/c6cy00695g es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c6cy00695g es_ES
dc.description.upvformatpinicio 5238 es_ES
dc.description.upvformatpfin 5261 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 14 es_ES
dc.relation.pasarela S\328613 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder University Grants Commission, India es_ES
dc.contributor.funder Department of Science and Technology, Ministry of Science and Technology, India es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063 es_ES
dc.description.references Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 es_ES
dc.description.references Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959k es_ES
dc.description.references Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395k es_ES
dc.description.references Ranocchiari, M., & Bokhoven, J. A. van. (2011). Catalysis by metal–organic frameworks: fundamentals and opportunities. Physical Chemistry Chemical Physics, 13(14), 6388. doi:10.1039/c0cp02394a es_ES
dc.description.references Dhakshinamoorthy, A., & Garcia, H. (2012). Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 41(15), 5262. doi:10.1039/c2cs35047e es_ES
dc.description.references Dhakshinamoorthy, A., & Garcia, H. (2014). Metal–organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chem. Soc. Rev., 43(16), 5750-5765. doi:10.1039/c3cs60442j es_ES
dc.description.references Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2015). Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chemical Society Reviews, 44(7), 1922-1947. doi:10.1039/c4cs00254g es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2012). Commercial metal–organic frameworks as heterogeneous catalysts. Chemical Communications, 48(92), 11275. doi:10.1039/c2cc34329k es_ES
dc.description.references Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2014). Catalysis by metal–organic frameworks in water. Chem. Commun., 50(85), 12800-12814. doi:10.1039/c4cc04387a es_ES
dc.description.references Ferrer, B., Alvaro, M., Baldovi, H. G., Reinsch, H., & Stock, N. (2014). Photophysical Evidence of Charge-Transfer-Complex Pairs in Mixed-Linker 5-Amino/5-Nitroisophthalate CAU-10. ChemPhysChem, 15(5), 924-928. doi:10.1002/cphc.201301178 es_ES
dc.description.references Li, M., Schnablegger, H., & Mann, S. (1999). Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature, 402(6760), 393-395. doi:10.1038/46509 es_ES
dc.description.references Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610 es_ES
dc.description.references Eddaoudi, M., Li, H., & Yaghi, O. M. (2000). Highly Porous and Stable Metal−Organic Frameworks:  Structure Design and Sorption Properties. Journal of the American Chemical Society, 122(7), 1391-1397. doi:10.1021/ja9933386 es_ES
dc.description.references Chen, B., Eddaoudi, M., Reineke, T. M., Kampf, J. W., O’Keeffe, M., & Yaghi, O. M. (2000). Cu2(ATC)·6H2O:  Design of Open Metal Sites in Porous Metal−Organic Crystals (ATC:  1,3,5,7-Adamantane Tetracarboxylate). Journal of the American Chemical Society, 122(46), 11559-11560. doi:10.1021/ja003159k es_ES
dc.description.references Kim, J., Chen, B., Reineke, T. M., Li, H., Eddaoudi, M., Moler, D. B., … Yaghi, O. M. (2001). Assembly of Metal−Organic Frameworks from Large Organic and Inorganic Secondary Building Units:  New Examples and Simplifying Principles for Complex Structures▵. Journal of the American Chemical Society, 123(34), 8239-8247. doi:10.1021/ja010825o es_ES
dc.description.references Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b es_ES
dc.description.references Mellot-Draznieks, C., Dutour, J., & Férey, G. (2004). Hybrid Organic-Inorganic Frameworks: Routes for Computational Design and Structure Prediction. Angewandte Chemie International Edition, 43(46), 6290-6296. doi:10.1002/anie.200454251 es_ES
dc.description.references Ferey, G. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275 es_ES
dc.description.references Natarajan, S., & Mahata, P. (2009). Metal–organic framework structures – how closely are they related to classical inorganic structures? Chemical Society Reviews, 38(8), 2304. doi:10.1039/b815106g es_ES
dc.description.references Lescouet, T., Kockrick, E., Bergeret, G., Pera-Titus, M., Aguado, S., & Farrusseng, D. (2012). Homogeneity of flexible metal–organic frameworks containing mixed linkers. Journal of Materials Chemistry, 22(20), 10287. doi:10.1039/c2jm15966j es_ES
dc.description.references GASCON, J., AKTAY, U., HERNANDEZALONSO, M., VANKLINK, G., & KAPTEIJN, F. (2009). Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 261(1), 75-87. doi:10.1016/j.jcat.2008.11.010 es_ES
dc.description.references Seoane, B., Castellanos, S., Dikhtiarenko, A., Kapteijn, F., & Gascon, J. (2016). Multi-scale crystal engineering of metal organic frameworks. Coordination Chemistry Reviews, 307, 147-187. doi:10.1016/j.ccr.2015.06.008 es_ES
dc.description.references Stock, N., & Biswas, S. (2011). Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 112(2), 933-969. doi:10.1021/cr200304e es_ES
dc.description.references Eddaoudi, M., Sava, D. F., Eubank, J. F., Adil, K., & Guillerm, V. (2015). Zeolite-like metal–organic frameworks (ZMOFs): design, synthesis, and properties. Chemical Society Reviews, 44(1), 228-249. doi:10.1039/c4cs00230j es_ES
dc.description.references Cook, T. R., Zheng, Y.-R., & Stang, P. J. (2012). Metal–Organic Frameworks and Self-Assembled Supramolecular Coordination Complexes: Comparing and Contrasting the Design, Synthesis, and Functionality of Metal–Organic Materials. Chemical Reviews, 113(1), 734-777. doi:10.1021/cr3002824 es_ES
dc.description.references Leus, K., Bogaerts, T., De Decker, J., Depauw, H., Hendrickx, K., Vrielinck, H., … Van Der Voort, P. (2016). Systematic study of the chemical and hydrothermal stability of selected «stable» Metal Organic Frameworks. Microporous and Mesoporous Materials, 226, 110-116. doi:10.1016/j.micromeso.2015.11.055 es_ES
dc.description.references Moon, H. R., Lim, D.-W., & Suh, M. P. (2013). Fabrication of metal nanoparticles in metal–organic frameworks. Chem. Soc. Rev., 42(4), 1807-1824. doi:10.1039/c2cs35320b es_ES
dc.description.references García-García, P., Müller, M., & Corma, A. (2014). MOF catalysis in relation to their homogeneous counterparts and conventional solid catalysts. Chemical Science, 5(8), 2979. doi:10.1039/c4sc00265b es_ES
dc.description.references Opanasenko, M., Dhakshinamoorthy, A., Shamzhy, M., Nachtigall, P., Horáček, M., Garcia, H., & Čejka, J. (2013). Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catal. Sci. Technol., 3(2), 500-507. doi:10.1039/c2cy20586f es_ES
dc.description.references Opanasenko, M., Dhakshinamoorthy, A., Hwang, Y. K., Chang, J.-S., Garcia, H., & Čejka, J. (2013). Superior Performance of Metal-Organic Frameworks over Zeolites as Solid Acid Catalysts in the Prins Reaction: Green Synthesis of Nopol. ChemSusChem, 6(5), 865-871. doi:10.1002/cssc.201300032 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., Corma, A., & Garcia, H. (2011). Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 40(24), 6344. doi:10.1039/c1dt10354g es_ES
dc.description.references Livage, C., Forster, P. M., Guillou, N., Tafoya, M. M., Cheetham, A. K., & Férey, G. (2007). Effect of Mixing of Metal Cations on the Topology of Metal Oxide Networks. Angewandte Chemie International Edition, 46(31), 5877-5879. doi:10.1002/anie.200700247 es_ES
dc.description.references Férey, G., Millange, F., Morcrette, M., Serre, C., Doublet, M.-L., Grenèche, J.-M., & Tarascon, J.-M. (2007). Mixed-Valence Li/Fe-Based Metal–Organic Frameworks with Both Reversible Redox and Sorption Properties. Angewandte Chemie International Edition, 46(18), 3259-3263. doi:10.1002/anie.200605163 es_ES
dc.description.references Wang, Z., & Cohen, S. M. (2009). Postsynthetic modification of metal–organic frameworks. Chemical Society Reviews, 38(5), 1315. doi:10.1039/b802258p es_ES
dc.description.references Stavitski, E., Goesten, M., Juan-Alcañiz, J., Martinez-Joaristi, A., Serra-Crespo, P., Petukhov, A. V., … Kapteijn, F. (2011). Kinetic Control of Metal-Organic Framework Crystallization Investigated by Time-Resolved In Situ X-Ray Scattering. Angewandte Chemie International Edition, 50(41), 9624-9628. doi:10.1002/anie.201101757 es_ES
dc.description.references Yin, Z., Zhou, Y.-L., Zeng, M.-H., & Kurmoo, M. (2015). The concept of mixed organic ligands in metal–organic frameworks: design, tuning and functions. Dalton Transactions, 44(12), 5258-5275. doi:10.1039/c4dt04030a es_ES
dc.description.references Zhao, X.-L., & Sun, W.-Y. (2014). The organic ligands with mixed N-/O-donors used in construction of functional metal–organic frameworks. CrystEngComm, 16(16), 3247. doi:10.1039/c3ce41791c es_ES
dc.description.references Chae, H. K., Kim, J., Friedrichs, O. D., O’Keeffe, M., & Yaghi, O. M. (2003). Design of Frameworks with Mixed Triangular and Octahedral Building Blocks Exemplified by the Structure of[Zn4O(TCA)2] Having the Pyrite Topology. Angewandte Chemie International Edition, 42(33), 3907-3909. doi:10.1002/anie.200351546 es_ES
dc.description.references Climent, M. J., Corma, A., Iborra, S., & Sabater, M. J. (2014). Heterogeneous Catalysis for Tandem Reactions. ACS Catalysis, 4(3), 870-891. doi:10.1021/cs401052k es_ES
dc.description.references Cirujano, F. G., Llabrés i Xamena, F. X., & Corma, A. (2012). MOFs as multifunctional catalysts: One-pot synthesis of menthol from citronellal over a bifunctional MIL-101 catalyst. Dalton Transactions, 41(14), 4249. doi:10.1039/c2dt12480g es_ES
dc.description.references Felpin, F.-X., & Fouquet, E. (2008). Heterogeneous Multifunctional Catalysts for Tandem Processes: An Approach toward Sustainability. ChemSusChem, 1(8-9), 718-724. doi:10.1002/cssc.200800110 es_ES
dc.description.references Jagadeesan, D. (2016). Multifunctional nanocatalysts for tandem reactions: A leap toward sustainability. Applied Catalysis A: General, 511, 59-77. doi:10.1016/j.apcata.2015.11.033 es_ES
dc.description.references Polshettiwar, V., Luque, R., Fihri, A., Zhu, H., Bouhrara, M., & Basset, J.-M. (2011). Magnetically Recoverable Nanocatalysts. Chemical Reviews, 111(5), 3036-3075. doi:10.1021/cr100230z es_ES
dc.description.references Dhakshinamoorthy, A., & Garcia, H. (2014). Cascade Reactions Catalyzed by Metal Organic Frameworks. ChemSusChem, 7(9), 2392-2410. doi:10.1002/cssc.201402148 es_ES
dc.description.references Barrer, R. M., & Walker, A. J. (1964). Imbibition of electrolytes by porous crystals. Transactions of the Faraday Society, 60, 171. doi:10.1039/tf9646000171 es_ES
dc.description.references Rossin, J. A., Saldarriaga, C., & Davis, M. E. (1987). Synthesis of cobalt containing ZSM-5. Zeolites, 7(4), 295-300. doi:10.1016/0144-2449(87)90030-3 es_ES
dc.description.references Chavan, S. M., Shearer, G. C., Svelle, S., Olsbye, U., Bonino, F., Ethiraj, J., … Bordiga, S. (2014). Synthesis and Characterization of Amine-Functionalized Mixed-Ligand Metal–Organic Frameworks of UiO-66 Topology. Inorganic Chemistry, 53(18), 9509-9515. doi:10.1021/ic500607a es_ES
dc.description.references Wang, L. J., Deng, H., Furukawa, H., Gándara, F., Cordova, K. E., Peri, D., & Yaghi, O. M. (2014). Synthesis and Characterization of Metal–Organic Framework-74 Containing 2, 4, 6, 8, and 10 Different Metals. Inorganic Chemistry, 53(12), 5881-5883. doi:10.1021/ic500434a es_ES
dc.description.references Li, M., Li, D., O’Keeffe, M., & Yaghi, O. M. (2013). Topological Analysis of Metal–Organic Frameworks with Polytopic Linkers and/or Multiple Building Units and the Minimal Transitivity Principle. Chemical Reviews, 114(2), 1343-1370. doi:10.1021/cr400392k es_ES
dc.description.references Morris, W., Taylor, R. E., Dybowski, C., Yaghi, O. M., & Garcia-Garibay, M. A. (2011). Framework mobility in the metal–organic framework crystal IRMOF-3: Evidence for aromatic ring and amine rotation. Journal of Molecular Structure, 1004(1-3), 94-101. doi:10.1016/j.molstruc.2011.07.037 es_ES
dc.description.references Rowsell, J. L. C., & Yaghi, O. M. (2006). Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metal−Organic Frameworks. Journal of the American Chemical Society, 128(4), 1304-1315. doi:10.1021/ja056639q es_ES
dc.description.references Li, S.-Y., & Liu, Z.-H. (2016). Co5In(BTC)4[B2O4(OH)]2: the first MOF material constructed by borate polyanions and carboxylate mixed ligands. Dalton Transactions, 45(1), 66-69. doi:10.1039/c5dt03535j es_ES
dc.description.references Larrea, E. S., Fernández de Luis, R., Orive, J., Iglesias, M., & Arriortua, M. I. (2015). [NaCu(2,4-HPdc)(2,4-Pdc)] Mixed Metal-Organic Framework as a Heterogeneous Catalyst. European Journal of Inorganic Chemistry, 2015(28), 4699-4707. doi:10.1002/ejic.201500431 es_ES
dc.description.references Reimer, N., Bueken, B., Leubner, S., Seidler, C., Wark, M., De Vos, D., & Stock, N. (2015). Three Series of Sulfo-Functionalized Mixed-Linker CAU-10 Analogues: Sorption Properties, Proton Conductivity, and Catalytic Activity. Chemistry - A European Journal, 21(35), 12517-12524. doi:10.1002/chem.201501502 es_ES
dc.description.references Siu, P. W., Brown, Z. J., Farha, O. K., Hupp, J. T., & Scheidt, K. A. (2013). A mixed dicarboxylate strut approach to enhancing catalytic activity of a de novo urea derivative of metal–organic framework UiO-67. Chemical Communications, 49(93), 10920. doi:10.1039/c3cc47177b es_ES
dc.description.references Lili, L., Xin, Z., Shumin, R., Ying, Y., Xiaoping, D., Jinsen, G., … Jing, H. (2014). Catalysis by metal–organic frameworks: proline and gold functionalized MOFs for the aldol and three-component coupling reactions. RSC Adv., 4(25), 13093-13107. doi:10.1039/c4ra01269k es_ES
dc.description.references Liu, X., Akerboom, S., Jong, M. de, Mutikainen, I., Tanase, S., Meijerink, A., & Bouwman, E. (2015). Mixed-Lanthanoid Metal–Organic Framework for Ratiometric Cryogenic Temperature Sensing. Inorganic Chemistry, 54(23), 11323-11329. doi:10.1021/acs.inorgchem.5b01924 es_ES
dc.description.references Sun, Q., Liu, M., Li, K., Han, Y., Zuo, Y., Wang, J., … Guo, X. (2016). Controlled synthesis of mixed-valent Fe-containing metal organic frameworks for the degradation of phenol under mild conditions. Dalton Transactions, 45(19), 7952-7959. doi:10.1039/c5dt05002b es_ES
dc.description.references Cancino, P., Vega, A., Santiago-Portillo, A., Navalon, S., Alvaro, M., Aguirre, P., … García, H. (2016). A novel copper(ii)–lanthanum(iii) metal organic framework as a selective catalyst for the aerobic oxidation of benzylic hydrocarbons and cycloalkenes. Catalysis Science & Technology, 6(11), 3727-3736. doi:10.1039/c5cy01448d es_ES
dc.description.references Fang, Z., Bueken, B., De Vos, D. E., & Fischer, R. A. (2015). Defect-Engineered Metal-Organic Frameworks. Angewandte Chemie International Edition, 54(25), 7234-7254. doi:10.1002/anie.201411540 es_ES
dc.description.references Canivet, J., Vandichel, M., & Farrusseng, D. (2016). Origin of highly active metal–organic framework catalysts: defects? Defects! Dalton Transactions, 45(10), 4090-4099. doi:10.1039/c5dt03522h es_ES
dc.description.references Deria, P., Mondloch, J. E., Karagiaridi, O., Bury, W., Hupp, J. T., & Farha, O. K. (2014). Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. Chem. Soc. Rev., 43(16), 5896-5912. doi:10.1039/c4cs00067f es_ES
dc.description.references Song, X., Kim, T. K., Kim, H., Kim, D., Jeong, S., Moon, H. R., & Lah, M. S. (2012). Post-Synthetic Modifications of Framework Metal Ions in Isostructural Metal–Organic Frameworks: Core–Shell Heterostructures via Selective Transmetalations. Chemistry of Materials, 24(15), 3065-3073. doi:10.1021/cm301605w es_ES
dc.description.references Sun, D., Liu, W., Qiu, M., Zhang, Y., & Li, Z. (2015). Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal–organic frameworks (MOFs). Chemical Communications, 51(11), 2056-2059. doi:10.1039/c4cc09407g es_ES
dc.description.references Smith, S. J. D., Ladewig, B. P., Hill, A. J., Lau, C. H., & Hill, M. R. (2015). Post-synthetic Ti Exchanged UiO-66 Metal-Organic Frameworks that Deliver Exceptional Gas Permeability in Mixed Matrix Membranes. Scientific Reports, 5(1). doi:10.1038/srep07823 es_ES
dc.description.references Bae, Y.-S., Dubbeldam, D., Nelson, A., Walton, K. S., Hupp, J. T., & Snurr, R. Q. (2009). Strategies for Characterization of Large-Pore Metal-Organic Frameworks by Combined Experimental and Computational Methods. Chemistry of Materials, 21(20), 4768-4777. doi:10.1021/cm803218f es_ES
dc.description.references Hendon, C. H., Bonnefoy, J., Quadrelli, E. A., Canivet, J., Chambers, M. B., Rousse, G., … Mellot-Draznieks, C. (2016). A Simple and Non-Destructive Method for Assessing the Incorporation of Bipyridine Dicarboxylates as Linkers within Metal-Organic Frameworks. Chemistry - A European Journal, 22(11), 3713-3718. doi:10.1002/chem.201600143 es_ES
dc.description.references Suga, M., Asahina, S., Sakuda, Y., Kazumori, H., Nishiyama, H., Nokuo, T., … Terasaki, O. (2014). Recent progress in scanning electron microscopy for the characterization of fine structural details of nano materials. Progress in Solid State Chemistry, 42(1-2), 1-21. doi:10.1016/j.progsolidstchem.2014.02.001 es_ES
dc.description.references Kozachuk, O., Meilikhov, M., Yusenko, K., Schneemann, A., Jee, B., Kuttatheyil, A. V., … Fischer, R. A. (2013). A Solid-Solution Approach to Mixed-Metal Metal-Organic Frameworks - Detailed Characterization of Local Structures, Defects and Breathing Behaviour of Al/V Frameworks. European Journal of Inorganic Chemistry, 2013(26), 4546-4557. doi:10.1002/ejic.201300591 es_ES
dc.description.references Nevjestić, I., Depauw, H., Leus, K., Kalendra, V., Caretti, I., Jeschke, G., … Vrielinck, H. (2015). Multi-frequency (S, X, Q and W-band) EPR and ENDOR Study of Vanadium(IV) Incorporation in the Aluminium Metal-Organic Framework MIL-53. ChemPhysChem, 16(14), 2968-2973. doi:10.1002/cphc.201500522 es_ES
dc.description.references Katzenmeyer, A. M., Canivet, J., Holland, G., Farrusseng, D., & Centrone, A. (2014). Assessing Chemical Heterogeneity at the Nanoscale in Mixed-Ligand Metal-Organic Frameworks with the PTIR Technique. Angewandte Chemie International Edition, 53(11), 2852-2856. doi:10.1002/anie.201309295 es_ES
dc.description.references Senkovska, I., Hoffmann, F., Fröba, M., Getzschmann, J., Böhlmann, W., & Kaskel, S. (2009). New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc=4,4′-biphenyl dicarboxylate). Microporous and Mesoporous Materials, 122(1-3), 93-98. doi:10.1016/j.micromeso.2009.02.020 es_ES
dc.description.references Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., … Férey, G. (2004). A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration. Chemistry - A European Journal, 10(6), 1373-1382. doi:10.1002/chem.200305413 es_ES
dc.description.references Krajnc, A., Kos, T., Zabukovec Logar, N., & Mali, G. (2015). A Simple NMR-Based Method for Studying the Spatial Distribution of Linkers within Mixed-Linker Metal-Organic Frameworks. Angewandte Chemie International Edition, 54(36), 10535-10538. doi:10.1002/anie.201504426 es_ES
dc.description.references Kong, X., Deng, H., Yan, F., Kim, J., Swisher, J. A., Smit, B., … Reimer, J. A. (2013). Mapping of Functional Groups in Metal-Organic Frameworks. Science, 341(6148), 882-885. doi:10.1126/science.1238339 es_ES
dc.description.references Mohideen, M. I. H., Xiao, B., Wheatley, P. S., McKinlay, A. C., Li, Y., Slawin, A. M. Z., … Morris, R. E. (2011). Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic–hydrophobic metal–organic framework. Nature Chemistry, 3(4), 304-310. doi:10.1038/nchem.1003 es_ES
dc.description.references Mohideen, M. I., Allan, P. K., Chapman, K. W., Hriljac, J. A., & Morris, R. E. (2014). Ultrasound-driven preparation and pair distribution function-assisted structure solution of a copper-based layered coordination polymer. Dalton Trans., 43(27), 10438-10442. doi:10.1039/c3dt53124d es_ES
dc.description.references Cliffe, M. J., Wan, W., Zou, X., Chater, P. A., Kleppe, A. K., Tucker, M. G., … Goodwin, A. L. (2014). Correlated defect nanoregions in a metal–organic framework. Nature Communications, 5(1). doi:10.1038/ncomms5176 es_ES
dc.description.references Elmekawy, A. A., Shiju, N. R., Rothenberg, G., & Brown, D. R. (2014). Environmentally Benign Bifunctional Solid Acid and Base Catalysts. Industrial & Engineering Chemistry Research, 53(49), 18722-18728. doi:10.1021/ie500839m es_ES
dc.description.references Leyva-Pérez, A., Cabrero-Antonino, J. R., & Corma, A. (2010). Bifunctional solid catalysts for chemoselective hydrogenation–cyclisation–amination cascade reactions of relevance for the synthesis of pharmaceuticals. Tetrahedron, 66(41), 8203-8209. doi:10.1016/j.tet.2010.08.022 es_ES
dc.description.references Mitchell, L., Williamson, P., Ehrlichová, B., Anderson, A. E., Seymour, V. R., Ashbrook, S. E., … Wright, P. A. (2014). Mixed-Metal MIL-100(Sc,M) (M=Al, Cr, Fe) for Lewis Acid Catalysis and Tandem CC Bond Formation and Alcohol Oxidation. Chemistry - A European Journal, 20(51), 17185-17197. doi:10.1002/chem.201404377 es_ES
dc.description.references Manna, K., Zhang, T., Greene, F. X., & Lin, W. (2015). Bipyridine- and Phenanthroline-Based Metal–Organic Frameworks for Highly Efficient and Tandem Catalytic Organic Transformations via Directed C–H Activation. Journal of the American Chemical Society, 137(7), 2665-2673. doi:10.1021/ja512478y es_ES
dc.description.references Lohr, T. L., & Marks, T. J. (2015). Orthogonal tandem catalysis. Nature Chemistry, 7(6), 477-482. doi:10.1038/nchem.2262 es_ES
dc.description.references Taarning, E., Osmundsen, C. M., Yang, X., Voss, B., Andersen, S. I., & Christensen, C. H. (2011). Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy Environ. Sci., 4(3), 793-804. doi:10.1039/c004518g es_ES
dc.description.references Lew, C. M., Rajabbeigi, N., & Tsapatsis, M. (2012). One-Pot Synthesis of 5-(Ethoxymethyl)furfural from Glucose Using Sn-BEA and Amberlyst Catalysts. Industrial & Engineering Chemistry Research, 51(14), 5364-5366. doi:10.1021/ie2025536 es_ES
dc.description.references Kar, P., Haldar, R., Gómez-García, C. J., & Ghosh, A. (2012). Antiferromagnetic Porous Metal–Organic Framework Containing Mixed-Valence [MnII4MnIII2(μ4-O)2]10+ Units with Catecholase Activity and Selective Gas Adsorption. Inorganic Chemistry, 51(7), 4265-4273. doi:10.1021/ic2027362 es_ES
dc.description.references SHI, F.-N., Silva, A. R., Yang, T.-H., & Rocha, J. (2013). Mixed Cu(ii)–Bi(iii) metal organic framework with a 2D inorganic subnetwork and its catalytic activity. CrystEngComm, 15(19), 3776. doi:10.1039/c3ce27056d es_ES
dc.description.references Yao, H.-F., Yang, Y., Liu, H., Xi, F.-G., & Gao, E.-Q. (2014). CPO-27-M as heterogeneous catalysts for aldehyde cyanosilylation and styrene oxidation. Journal of Molecular Catalysis A: Chemical, 394, 57-65. doi:10.1016/j.molcata.2014.06.040 es_ES
dc.description.references Sun, D., Sun, F., Deng, X., & Li, Z. (2015). Mixed-Metal Strategy on Metal–Organic Frameworks (MOFs) for Functionalities Expansion: Co Substitution Induces Aerobic Oxidation of Cyclohexene over Inactive Ni-MOF-74. Inorganic Chemistry, 54(17), 8639-8643. doi:10.1021/acs.inorgchem.5b01278 es_ES
dc.description.references Krap, C. P., Newby, R., Dhakshinamoorthy, A., García, H., Cebula, I., Easun, T. L., … Schröder, M. (2016). Enhancement of CO2 Adsorption and Catalytic Properties by Fe-Doping of [Ga2(OH)2(L)] (H4L = Biphenyl-3,3′,5,5′-tetracarboxylic Acid), MFM-300(Ga2). Inorganic Chemistry, 55(3), 1076-1088. doi:10.1021/acs.inorgchem.5b02108 es_ES
dc.description.references Dietzel, P. D. C., Morita, Y., Blom, R., & Fjellvåg, H. (2005). An In Situ High-Temperature Single-Crystal Investigation of a Dehydrated Metal-Organic Framework Compound and Field-Induced Magnetization of One-Dimensional Metal-Oxygen Chains. Angewandte Chemie International Edition, 44(39), 6354-6358. doi:10.1002/anie.200501508 es_ES
dc.description.references Fu, Y., Sun, D., Qin, M., Huang, R., & Li, Z. (2012). Cu(ii)-and Co(ii)-containing metal–organic frameworks (MOFs) as catalysts for cyclohexene oxidation with oxygen under solvent-free conditions. RSC Advances, 2(8), 3309. doi:10.1039/c2ra01038k es_ES
dc.description.references Kleist, W., Jutz, F., Maciejewski, M., & Baiker, A. (2009). Mixed-Linker Metal-Organic Frameworks as Catalysts for the Synthesis of Propylene Carbonate from Propylene Oxide and CO2. European Journal of Inorganic Chemistry, 2009(24), 3552-3561. doi:10.1002/ejic.200900509 es_ES
dc.description.references Kleist, W., Maciejewski, M., & Baiker, A. (2010). MOF-5 based mixed-linker metal–organic frameworks: Synthesis, thermal stability and catalytic application. Thermochimica Acta, 499(1-2), 71-78. doi:10.1016/j.tca.2009.11.004 es_ES
dc.description.references Huang, Y., Gao, S., Liu, T., Lü, J., Lin, X., Li, H., & Cao, R. (2012). Palladium Nanoparticles Supported on Mixed-Linker Metal-Organic Frameworks as Highly Active Catalysts for Heck Reactions. ChemPlusChem, 77(2), 106-112. doi:10.1002/cplu.201100021 es_ES
dc.description.references Kozachuk, O., Luz, I., Llabrés i Xamena, F. X., Noei, H., Kauer, M., Albada, H. B., … Fischer, R. A. (2014). Multifunctional, Defect-Engineered Metal-Organic Frameworks with Ruthenium Centers: Sorption and Catalytic Properties. Angewandte Chemie International Edition, 53(27), 7058-7062. doi:10.1002/anie.201311128 es_ES
dc.description.references Marx, S., Kleist, W., & Baiker, A. (2011). Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives. Journal of Catalysis, 281(1), 76-87. doi:10.1016/j.jcat.2011.04.004 es_ES
dc.description.references Xu, X., van Bokhoven, J. A., & Ranocchiari, M. (2014). Tuning Regioisomer Reactivity in Catalysis using Bifunctional Metal-Organic Frameworks with Mixed Linkers. ChemCatChem, 6(7), 1887-1891. doi:10.1002/cctc.201402164 es_ES
dc.description.references Sun, D., Fu, Y., Liu, W., Ye, L., Wang, D., Yang, L., … Li, Z. (2013). Studies on Photocatalytic CO2Reduction over NH2-Uio-66(Zr) and Its Derivatives: Towards a Better Understanding of Photocatalysis on Metal-Organic Frameworks. Chemistry - A European Journal, 19(42), 14279-14285. doi:10.1002/chem.201301728 es_ES
dc.description.references Goh, T. W., Xiao, C., Maligal-Ganesh, R. V., Li, X., & Huang, W. (2015). Utilizing mixed-linker zirconium based metal-organic frameworks to enhance the visible light photocatalytic oxidation of alcohol. Chemical Engineering Science, 124, 45-51. doi:10.1016/j.ces.2014.08.052 es_ES
dc.description.references Wang, J.-L., Wang, C., & Lin, W. (2012). Metal–Organic Frameworks for Light Harvesting and Photocatalysis. ACS Catalysis, 2(12), 2630-2640. doi:10.1021/cs3005874 es_ES
dc.description.references Wang, S., & Wang, X. (2015). Multifunctional Metal-Organic Frameworks for Photocatalysis. Small, 11(26), 3097-3112. doi:10.1002/smll.201500084 es_ES
dc.description.references Dhakshinamoorthy, A., Asiri, A. M., & García, H. (2016). Metal-Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie International Edition, 55(18), 5414-5445. doi:10.1002/anie.201505581 es_ES
dc.description.references Lee, Y., Kim, S., Kang, J. K., & Cohen, S. M. (2015). Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal–organic framework under visible light irradiation. Chemical Communications, 51(26), 5735-5738. doi:10.1039/c5cc00686d es_ES
dc.description.references Rasero-Almansa, A. M., Corma, A., Iglesias, M., & Sánchez, F. (2014). Zirconium Materials from Mixed Dicarboxylate Linkers: Enhancing the Stability for Catalytic Applications. ChemCatChem, 6(12), 3426-3433. doi:10.1002/cctc.201402546 es_ES
dc.description.references Haldar, R., Reddy, S. K., Suresh, V. M., Mohapatra, S., Balasubramanian, S., & Maji, T. K. (2014). Flexible and Rigid Amine-Functionalized Microporous Frameworks Based on Different Secondary Building Units: Supramolecular Isomerism, Selective CO2Capture, and Catalysis. Chemistry - A European Journal, 20(15), 4347-4356. doi:10.1002/chem.201303610 es_ES
dc.description.references Le, H. T. N., Tran, T. V., Phan, N. T. S., & Truong, T. (2015). Efficient and recyclable Cu2(BDC)2(BPY)-catalyzed oxidative amidation of terminal alkynes: role of bipyridine ligand. Catalysis Science & Technology, 5(2), 851-859. doi:10.1039/c4cy01074d es_ES
dc.description.references Masoomi, M. Y., Bagheri, M., & Morsali, A. (2015). Application of Two Cobalt-Based Metal–Organic Frameworks as Oxidative Desulfurization Catalysts. Inorganic Chemistry, 54(23), 11269-11275. doi:10.1021/acs.inorgchem.5b01850 es_ES
dc.description.references Xuan, W., Ye, C., Zhang, M., Chen, Z., & Cui, Y. (2013). A chiral porous metallosalan-organic framework containing titanium-oxo clusters for enantioselective catalytic sulfoxidation. Chemical Science, 4(8), 3154. doi:10.1039/c3sc50487e es_ES
dc.description.references Bhunia, A., Dey, S., Moreno, J. M., Diaz, U., Concepcion, P., Van Hecke, K., … Van Der Voort, P. (2016). A homochiral vanadium–salen based cadmium bpdc MOF with permanent porosity as an asymmetric catalyst in solvent-free cyanosilylation. Chemical Communications, 52(7), 1401-1404. doi:10.1039/c5cc09459c es_ES
dc.description.references Cui, G.-H., He, C.-H., Jiao, C.-H., Geng, J.-C., & Blatov, V. A. (2012). Two metal–organic frameworks with unique high-connected binodal network topologies: synthesis, structures, and catalytic properties. CrystEngComm, 14(12), 4210. doi:10.1039/c2ce25264c es_ES
dc.description.references Qin, L., Zheng, J., Xiao, S.-L., Zheng, X.-H., & Cui, G.-H. (2013). A new supramolecular net constructed with 2D (4,4) layer subunits displaying unique 4-connected msw/P42/nnm topology: Structure, fluorescence and catalytic properties. Inorganic Chemistry Communications, 34, 71-74. doi:10.1016/j.inoche.2013.05.011 es_ES
dc.description.references Wang, X. X., Yu, B., Van Hecke, K., & Cui, G. H. (2014). Four cobalt(ii) coordination polymers with diverse topologies derived from flexible bis(benzimidazole) and aromatic dicarboxylic acids: syntheses, crystal structures and catalytic properties. RSC Adv., 4(106), 61281-61289. doi:10.1039/c4ra08138b es_ES
dc.description.references Wang, X.-L., Liu, D.-N., Luan, J., Lin, H.-Y., Le, M., & Liu, G.-C. (2015). Controllable assembly of three copper(II/I) metal–organic frameworks based on N,N′-bis(4-pyridinecarboxamide)-1,2-cyclohexane and 4,4′-oxydibenzoic acid: From three-dimensional interpenetrating framework to one-dimensional infinite chain. Inorganica Chimica Acta, 426, 39-44. doi:10.1016/j.ica.2014.11.010 es_ES
dc.description.references Lü, C.-N., Chen, M.-M., Zhang, W.-H., Li, D.-X., Dai, M., & Lang, J.-P. (2015). Construction of Zn(ii) and Cd(ii) metal–organic frameworks of diimidazole and dicarboxylate mixed ligands for the catalytic photodegradation of rhodamine B in water. CrystEngComm, 17(9), 1935-1943. doi:10.1039/c4ce02074j es_ES
dc.description.references Rasero-Almansa, A. M., Corma, A., Iglesias, M., & Sánchez, F. (2013). One-Pot Multifunctional Catalysis with NNN-Pincer Zr-MOF: Zr Base Catalyzed Condensation with Rh-Catalyzed Hydrogenation. ChemCatChem, 5(10), 3092-3100. doi:10.1002/cctc.201300371 es_ES
dc.description.references Yu, X., & Cohen, S. M. (2015). Photocatalytic metal–organic frameworks for the aerobic oxidation of arylboronic acids. Chemical Communications, 51(48), 9880-9883. doi:10.1039/c5cc01697e es_ES
dc.description.references Hou, C.-C., Li, T.-T., Cao, S., Chen, Y., & Fu, W.-F. (2015). Incorporation of a [Ru(dcbpy)(bpy)2]2+ photosensitizer and a Pt(dcbpy)Cl2 catalyst into metal–organic frameworks for photocatalytic hydrogen evolution from aqueous solution. Journal of Materials Chemistry A, 3(19), 10386-10394. doi:10.1039/c5ta01135c es_ES
dc.description.references Chen, L., Rangan, S., Li, J., Jiang, H., & Li, Y. (2014). A molecular Pd(ii) complex incorporated into a MOF as a highly active single-site heterogeneous catalyst for C–Cl bond activation. Green Chemistry, 16(8), 3978. doi:10.1039/c4gc00314d es_ES
dc.description.references Ren, Y., Cheng, X., Yang, S., Qi, C., Jiang, H., & Mao, Q. (2013). A chiral mixed metal–organic framework based on a Ni(saldpen) metalloligand: synthesis, characterization and catalytic performances. Dalton Transactions, 42(27), 9930. doi:10.1039/c3dt50664a es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem